[1]
|
L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Springer, New York, 2012.
Google Scholar
|
[2]
|
A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Springer-Verlag Berlin, New York, 2009.
Google Scholar
|
[3]
|
S. Carillo and O. Ragnisco, Nonlinear Evolution Equations and Dynamical Systems, Springer-Verlag Berlin, New York, 1990.
Google Scholar
|
[4]
|
Ü. Lepik, Numerical solution of evolution equations by the Haar Wavelet method, Applied Mathematics and Computation, 2007, 185, 695-704.
Google Scholar
|
[5]
|
S. Sahoo and S. Saha Ray, Improved Fractional Sub-Equation Method For (3+1)-Dimensional Generalized fractional KdV-Zakharov-Kuznetsov Equations, Computers and Mathematics with Applications, 2015, 70, 158-166.
Google Scholar
|
[6]
|
D. Kaya, An application for the higher order modified KdV equation by decomposition method, Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 693-702.
Google Scholar
|
[7]
|
P. Popelier, Solving the Schrödinger Equation:Has Everything Been Tried?, Imperial College Press, London, 2011.
Google Scholar
|
[8]
|
M. Nagasawa, Schrödinger Equations and Diffusion Theory, Springer Birkhäuser, New York, 2012.
Google Scholar
|
[9]
|
A. Hasegawa, Plasma Instabilities and Nonlinear Effects, Springer-Verlag Berlin, New York, 1975.
Google Scholar
|
[10]
|
Alireza K. Golmankhaneh, Ali K. Golmankhaneh and D. Baleanu, Homotopy perturbation method for solving a system of Schrödinger-korteweg-de vries equations, Romanian Reports in Physics, 2011, 63(3), 609-623.
Google Scholar
|
[11]
|
S. Saha Ray, On the Soliton Solution and Jacobi Doubly Periodic Solution of the Fractional Coupled Schrödinger-KdV Equation by a Novel Approach, International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16(2), 79-95.
Google Scholar
|
[12]
|
M. Lakshmanan and P. Kaliappan, Lie transformations, nonlinear evolution equations, and Painleve forms, Journal of Mathematical Physics, 1983, 24(4), 795-806.
Google Scholar
|
[13]
|
S. V. Singh, N. N. Rao and P. K. Shukla, Nonlinearly coupled Langmuir and dust-acoustic waves in a dusty plasma, Journal of Plasma Physics, 1998, 60(3), 551-567.
Google Scholar
|
[14]
|
N. N. Rao, Nonlinear wave modulations in plasmas, Pramana J. Phys., 1997, 29, 109-127.
Google Scholar
|
[15]
|
E. Fan, Multiple traveling wave solutions of nonlinear evolution equations using a unified algebraic method, J. Phys. A., 2002, 35, 6853-6872.
Google Scholar
|
[16]
|
S. S. Nourazar, A. Nazari-Golshan and M. Nourazar, On the closed form solutions of linear and nonlinear Cauchy Reaction-Diffusion Equations using the hybrid of Fourier transform and Variational Iterational Method, Phy. Intl., 2011, 2(1), 8-20.
Google Scholar
|
[17]
|
A. Doosthoseini, Variational Iteration Method for Solving Coupled SchrödingerKdV Equation, Applied Mathematical Sciences, 2010, 4(17), 823-837.
Google Scholar
|
[18]
|
L.Y. Huang, Y. D. Jiao and D. M. Liang, Multi-symplectic scheme for the coupled Schrödinger Boussinesq equations, Chin. Phys. B, 2013, 22(7), 1-5.
Google Scholar
|
[19]
|
D. Bai and J. Wang, The time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations, Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 1201-1210.
Google Scholar
|
[20]
|
N. N. Rao, Near-magnetosonic envelope upper-hybrid waves, J. Plasma Phys., 1988, 39, 385-405.
Google Scholar
|
[21]
|
N. Yajima and J. Satsuma, Soliton Solutions in a Diatomic Lattice System, Progress of Theoretical Physics, 1979, 62(2), 370-378.
Google Scholar
|
[22]
|
B. Guo, The global solution of the system of equations for a complex Schrödinger field coupled with a Boussinesq-type self-consistent field, Acta Math. Sinica, 1983, 26, 295-306.
Google Scholar
|
[23]
|
V. G. Makhankov, On stationary solutions of Schrödinger equation with a selfconsistent potential satisfying Boussinesq's equation, Phys. Lett. A, 1974, 50(1), 42-44.
Google Scholar
|
[24]
|
V. G. Makhankov, Dynamics of classical solitons (in non-integrable systems), Physics Reports, 1978, 35(1), 1-128.
Google Scholar
|
[25]
|
V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 1972, 35(5), 908-914.
Google Scholar
|
[26]
|
L. M. Zhang, D. M. Bai and S. S. Wang, Numerical analysis for a conservative difference scheme to solve the Schrödinger-Boussinesq equation, J. Comput. Appl. Math., 2011, 235, 4899-4915.
Google Scholar
|
[27]
|
X. Huang, The investigation of solutions to the coupled Schrödinger-Boussinesq equations, Abstract and Applied Analysis, 2013, 2013, 170372-1-5.
Google Scholar
|
[28]
|
S. Bilige, T. Chaolu and X. Wang, Application of the extended simplest equation method to the coupled Schrödinger-Boussinesq equation, Applied Mathematics and Computation, 2013, 224, 517-523.
Google Scholar
|
[29]
|
X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.
Google Scholar
|
[30]
|
X. J. Yang, A short note on local fractional calculus of function of one variable, J. Appl. Libr. Inf. Sci., 2012, 1(1), 1-13.
Google Scholar
|
[31]
|
X. J. Yang, The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems, Prespacetime J., 2012, 3(9), 913-923.
Google Scholar
|
[32]
|
M. S. Hu, D. Baleanu and X. J. Yang, One-phase problems for discontinuous heat transfer in fractal media, Math. Probl. Eng., 2013, 2013, 358473-1-3.
Google Scholar
|
[33]
|
A. Bekir, Ö Güner and A. C. Cevikel, Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations, Abstract and Applied Analysis, 2013, 2013, 426462-1-8.
Google Scholar
|
[34]
|
W. H. Su, X. J. Yang, H. Jafari and D. Baleanu, Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator, Advances in Difference Equations, 2013, 97, 1-8.
Google Scholar
|
[35]
|
X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press, Elsevier, 2015.
Google Scholar
|
[36]
|
J. H. He, S. K. Elagan and Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 2012, 376(4), 257-259.
Google Scholar
|
[37]
|
Ö Güner, A. Bekir and A. C. Cevikel, A variety of exact solutions for the time fractional Cahn-Allen equation, Eur. Phys. J. Plus, 2015, 130(146), 1-13.
Google Scholar
|