[1]
|
E. Vessiot, Sur une classe d'équations différentielles Ann. Sci. Ecole Norm. Sup., 1893, 10.
Google Scholar
|
[2]
|
A. Guldberg, Sur les équations différentielles ordinaire qui possèdent un système fundamental d'intégrales, C.R. Acad. Sci. Paris, 1893, 116.
Google Scholar
|
[3]
|
S. Lie, Sur une classe d'équations différentialles qui possèdent des systèmes fundamentaux d'intégrales, C.R. Acad. Sci. Paris, 1893, 116. Reprinted in:S. Lie, Ges. Abhandl. vol. 4, B.G. Teubner, Leipzig, 1929.
Google Scholar
|
[4]
|
S. Lie, Allgemeine Untersuchungen über Differentialgleichungen, die eine continuirliche, endliche Gruppe gestatten, Mathematische Annalen, 25, Heft 1, 1885. Reprinted in:S. Lie, Ges. Abhandl. vol. 6, Teubner, Leipzig, 1927.
Google Scholar
|
[5]
|
S. Lie, Vorlesungen über continuerliche Gruppen mit geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893.
Google Scholar
|
[6]
|
N.H. Ibragimov, A practical course in differential equations and mathemtical modelling, Higher Education Press, Beijing, 2009.
Google Scholar
|
[7]
|
N.H. Ibragimov, A.A. Gainetdinova, Three-dimensional dynamical systems admitting nonliner superposition with three-dimensional Vessiot-Guldberg-Lie algebras, Appl. Math. Letters, 2016, 52.
Google Scholar
|
[8]
|
N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley & Sons, Chichester, 1999.
Google Scholar
|
[9]
|
S. Lie, Theorie der Transformationsgruppen, vol. 3, B.G. Teubner, Leipzig, 1893.
Google Scholar
|
[10]
|
G.M. Mubarakzyanov, On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, 1(32).
Google Scholar
|
[11]
|
C. Wafo Soh, F.M;. Mahomed, Canonical forms for systems of two second-order ordinary differential equations, J. Phys A:Math. Gen., 2001, 34.
Google Scholar
|
[12]
|
R.O. Popovich, V.M. Boyko, M.O. Nesterenko, M.W. Lutfullin, 2003 Realizations of real low-dimensional Lie algebras, J. Phys A:Math. Gen., 2003, 36.
Google Scholar
|