2017 Volume 7 Issue 3
Article Contents

Nail H. Ibragimov, Aliya A. Gainetdinova. THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH FOUR-DIMENSIONAL VESSIOT-GULDBERG-LIE ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 872-883. doi: 10.11948/2017055
Citation: Nail H. Ibragimov, Aliya A. Gainetdinova. THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH FOUR-DIMENSIONAL VESSIOT-GULDBERG-LIE ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 872-883. doi: 10.11948/2017055

THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH FOUR-DIMENSIONAL VESSIOT-GULDBERG-LIE ALGEBRAS

  • Dynamical systems attract much attention due to their wide applications. Many significant results have been obtained in this field from various points of view. The present paper is devoted to an algebraic method of integration of three-dimensional nonlinear time dependent dynamical systems admitting nonlinear superposition with four-dimensional Vessiot-Guldberg-Lie algebras L4.The invariance of the relation between a dynamical system admitting nonlinear superposition and its Vessiot-Guldberg-Lie algebra is the core of the integration method. It allows to simplify the dynamical systems in question by reducing them to standard forms. We reduce the three-dimensional dynamical systems with four-dimensional Vessiot-Guldberg-Lie algebras to 98 standard types and show that 86 of them are integrable by quadratures.
    MSC: 34A;34A34;70G65
  • 加载中
  • [1] E. Vessiot, Sur une classe d'équations différentielles Ann. Sci. Ecole Norm. Sup., 1893, 10.

    Google Scholar

    [2] A. Guldberg, Sur les équations différentielles ordinaire qui possèdent un système fundamental d'intégrales, C.R. Acad. Sci. Paris, 1893, 116.

    Google Scholar

    [3] S. Lie, Sur une classe d'équations différentialles qui possèdent des systèmes fundamentaux d'intégrales, C.R. Acad. Sci. Paris, 1893, 116. Reprinted in:S. Lie, Ges. Abhandl. vol. 4, B.G. Teubner, Leipzig, 1929.

    Google Scholar

    [4] S. Lie, Allgemeine Untersuchungen über Differentialgleichungen, die eine continuirliche, endliche Gruppe gestatten, Mathematische Annalen, 25, Heft 1, 1885. Reprinted in:S. Lie, Ges. Abhandl. vol. 6, Teubner, Leipzig, 1927.

    Google Scholar

    [5] S. Lie, Vorlesungen über continuerliche Gruppen mit geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893.

    Google Scholar

    [6] N.H. Ibragimov, A practical course in differential equations and mathemtical modelling, Higher Education Press, Beijing, 2009.

    Google Scholar

    [7] N.H. Ibragimov, A.A. Gainetdinova, Three-dimensional dynamical systems admitting nonliner superposition with three-dimensional Vessiot-Guldberg-Lie algebras, Appl. Math. Letters, 2016, 52.

    Google Scholar

    [8] N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley & Sons, Chichester, 1999.

    Google Scholar

    [9] S. Lie, Theorie der Transformationsgruppen, vol. 3, B.G. Teubner, Leipzig, 1893.

    Google Scholar

    [10] G.M. Mubarakzyanov, On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, 1(32).

    Google Scholar

    [11] C. Wafo Soh, F.M;. Mahomed, Canonical forms for systems of two second-order ordinary differential equations, J. Phys A:Math. Gen., 2001, 34.

    Google Scholar

    [12] R.O. Popovich, V.M. Boyko, M.O. Nesterenko, M.W. Lutfullin, 2003 Realizations of real low-dimensional Lie algebras, J. Phys A:Math. Gen., 2003, 36.

    Google Scholar

Article Metrics

Article views(2764) PDF downloads(1351) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint