[1]
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
Google Scholar
|
[2]
|
P. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 2006, 6(1), 1-21.
Google Scholar
|
[3]
|
P. Bates, K. Lu and B. Wang, Random attractors for stochastic reactiondiffusion equations on unbounded domains, J. Differ. Equations, 2009, 246(2), 845-869.
Google Scholar
|
[4]
|
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields, 1994, 100(3), 365-393.
Google Scholar
|
[5]
|
A. Gu, Pullback D-attractors of non-autonomous three-component reversible Gray-Scott system on unbounded domains, Abstr. Appl. Anal., 2013, 2013(2), 1-13.
Google Scholar
|
[6]
|
A. Gu, Random attractors of stochastic three-component reversible Gray-Scott system on unbounded domains, Abstr. Appl. Anal., 2012, 2012(7), 1-22.
Google Scholar
|
[7]
|
A. Gu and H. Xiang, Upper semicontinuity of random attractors for stochastic three-component reversible Gray-Scott system, Appl. Math. Comput., 2013, 225(12), 387-400.
Google Scholar
|
[8]
|
A. Gu, S. Zhou and Z. Wang, Uniform attractor of non-autonomous threecomponent reversible Gray-Scott system, Appl. Math. Comput., 2013, 219(16), 8718-8729.
Google Scholar
|
[9]
|
P. Gray and S. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor:Isolas and other forms of multistability, Chem. Eng. Sci., 1983, 38(1), 29-43.
Google Scholar
|
[10]
|
P. Gray and S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor:Oscillations and instabilities in the system a+2b → 3b,b → c, Chem. Eng. Sci., 1984, 39(6), 1087-1097.
Google Scholar
|
[11]
|
P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, 2011.
Google Scholar
|
[12]
|
Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equations, 2008, 245(7), 1775-1800.
Google Scholar
|
[13]
|
Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equations, 2015, 258(2), 5040-534.
Google Scholar
|
[14]
|
Y. Li and J. Yin, A modified proof of pullback attractors in a sobolev space for stochastic Fitzhugh-Nagumo equations, Disc. Cont. Dyn. Syst. Serie B., 2016, 21(4), 1203-1223.
Google Scholar
|
[15]
|
G. Lukaszewicz, On pullback attractors in HH01 for nonautonomous reactiondiffusion equations, Int. J. Bifurcat. Chaos, 2010, 20(9), 2637-2644.
Google Scholar
|
[16]
|
H. Mahara, N. Suematsu, T. Yamaguchi, K. Ohgane, Y. Nishiura and M. Shimomura, Three-variable reversible Gray-Scott model, J. Chem. Physics, 2004, 121(18), 8968-8972.
Google Scholar
|
[17]
|
I. Prigogine and R. Lefever, Symmetry-breaking instabilities in dissipative systems, J. Chem. Physics, 1968, 48(4), 1665-1700.
Google Scholar
|
[18]
|
B. Schmalfuss, Backward cocycle and attractors of stochastic differential equations (in:V. Reitmann, T. Riedrich, N. Koksch, eds.), International Seminar on Applied Mathematics-Nonlinear Dynamics:Attractor Approximation and Global Behavior, Technische Universität, Dresden, 1992, 185-192.
Google Scholar
|
[19]
|
S. Scott and K. Showalter, Simple and complex reaction-diffusion fronts, Chemical Waves and Patterns (R. Kapral and K. Showalter, eds.), Understanding Chemical Reactivity, Springer, 1995, 10, 485-516.
Google Scholar
|
[20]
|
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 2012, 253(5), 1544-1583.
Google Scholar
|
[21]
|
B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations on Rn, Front. Math. China, 2009, 4(3), 563-583.
Google Scholar
|
[22]
|
F. Yin and L. Liu, D-pullback attractor for a non-autonomous wave equation with additive noise on unbounded domains, Comput. Math. Appl., 2014, 68(3), 424-438.
Google Scholar
|
[23]
|
Y. You, Dynamics of three-component reversible Gray-Stott model, Disc. Cont. Dyn. Syst. Serie B., 2010, 14(4), 1671-1688.
Google Scholar
|
[24]
|
Y. You, Robustness of global attractors for reversible Gray-Scott systems, J. Dyn. Differ. Equat., 2012, 24(3), 495-520.
Google Scholar
|
[25]
|
Y. You, Random attractors and robustness for stochastic reversible reactiondiffusion systems, Disc. Cont. Dyn. Syst. Serie A., 2014, 34(1), 301-333.
Google Scholar
|
[26]
|
Y. You, Random dynamics of stochastic reaction-diffusion systems with additive noise, J. Dyn. Differ. Equat., 2015, 29(1), 82-112. DOI:10.1007/s10884-015-9431-4.
Google Scholar
|
[27]
|
Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal., 2011, 74(5), 1969-1986.
Google Scholar
|
[28]
|
W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noise, Appl. Math. Comput., 2014, 239(15), 358-374.
Google Scholar
|
[29]
|
C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reactiondiffusion equations, J. Differ. Equations, 2006, 223(2), 367-399.
Google Scholar
|