[1]
|
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
Google Scholar
|
[2]
|
H. Amann, Dynamical theory of quasilinear parabolic equations Ⅲ:global existence, Math. Z., 1989, 202(2), 219-250.
Google Scholar
|
[3]
|
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In:Schmeisser HJ, Triebel H (eds) Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), vol 133. Teubner-Texte zur Mathematik. Teubner, Stuttgart, pp 9-126, 1993.
Google Scholar
|
[4]
|
B. Asquith and C. R.M. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 2007, 85(4), 280-286.
Google Scholar
|
[5]
|
C. R. M. Bangham, The immune response to HTLV-I, Curr. Opin. Immunol.,2000, 12(4), 397-402.
Google Scholar
|
[6]
|
D. M. Brainard, et al., Migration of antigen-specific T cells away from CXCR4-binding Human Immunodeficiency Virus Type 1 gp120, J. Virol. Vol., 2004, 78(10), 5184-5193.
Google Scholar
|
[7]
|
D. M. Brainard, et al., Decreased CXCR3+ CD8 T cells in Advanced Human Immunodeficiency Virus infection suggest that a homing defect contributes to cytotoxic T-lymphocyte dysfunction, J. Virol. Vol., 2007, 81(16), 8439-8450.
Google Scholar
|
[8]
|
F. Chatelin, The spectral approximation of linear operators with application to the computation of eigenelements of differential and integral operators, SIAM Rev., 1981, 23(4), 495-522.
Google Scholar
|
[9]
|
O. Diekmann, J. A. P Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in the models for infectious disease in heterogeneous populations, J. Math. Biol., 1990, 28(4), 365-382.
Google Scholar
|
[10]
|
A. M. Elaiw and N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, Int. J Biomath., 2015, 8, 1550058-1-53.
Google Scholar
|
[11]
|
G. A. Funka, V. A. A. Jansen, S. Bonhoffer and T. Killingback, Spatial models of virus-immune dynamics, J. Theor. Biol., 2005233(2), 221-236.
Google Scholar
|
[12]
|
Q. Gan, R. Xu, X. Zhang and P. Yang, Travelling waves of a three-species Lotka-Volterra food-chain system with spatial diffusion and time delays, Nonlinear Anal. Real World Appl., 2010, 11(4), 2817-2832.
Google Scholar
|
[13]
|
A. Gessain and R. Mahieux, Tropical spastic paraparesis and HTLV-I associated myelopathy:clinical, epidemiological, virological and therapeutic aspects, Rev. Neurol., 2012, 168(3), 257-269.
Google Scholar
|
[14]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
Google Scholar
|
[15]
|
H. W. Hethcote, M.A. Lewis and P. vanden Driessche, An epidemiological model with delay and a nonlinear incidence rate, J. Math. Biol., 1989, 27(1), 49-64.
Google Scholar
|
[16]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
Google Scholar
|
[17]
|
J. Huang and X. Zou, Travelling wave solutions in delayed reaction diffusion models with partial monotonicity, Acta Math. Appl. Sin., 2006, 22(2), 243-256.
Google Scholar
|
[18]
|
G. Huang, W. Ma and T. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 2011, 24, 1199-1203.
Google Scholar
|
[19]
|
K. Hattaf, N. Yousfi and A. Tridan, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Anal. Real World Appl., 2012, 13(4), 1866-1872.
Google Scholar
|
[20]
|
K. Hattaf and N. Yousfi, Global stability for reaction-diffusion equations in biology, Comput. Math. Appl., 2013, 66, 1488-1497.
Google Scholar
|
[21]
|
K. Hattaf and N. Yousfi, Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response, Comp. Appl. Math., 2015, 34, 807-818.
Google Scholar
|
[22]
|
K. Hattaf and N. Yousfi, A generalized HBV model with diffusion and two delays, Comput. Math. Appl., 2015, 69, 31-40.
Google Scholar
|
[23]
|
M. Ikegami, et al., Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy, J. Neuroimmunol., 2002, 127(1-2), 134-138.
Google Scholar
|
[24]
|
A. Korobeinikov and P.K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 2004, 1(1), 57-60.
Google Scholar
|
[25]
|
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 200466(4), 879-883.
Google Scholar
|
[26]
|
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 2007, 69(6), 1871-1886.
Google Scholar
|
[27]
|
N.L. Komarova, Viral reproductive strategies:how can lytic viruses be evolutionarily competitive? J. Theor. Biol., 2007, 249(4), 766-784.
Google Scholar
|
[28]
|
T. Kitazono, et al., Advantage of higher-avidity CTL specific for Tax against human T-lymphotropic virus-1 infected cells and tumors, Cell. Immunol., 2011, 272(1), 11-17.
Google Scholar
|
[29]
|
W. Liu, H.W. Hethcote and S.A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 1987, 25(4), 359-380.
Google Scholar
|
[30]
|
W. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion models with applications to diffusion-competition models, Nonlinearity, 2006, 19(6), 1253-1273.
Google Scholar
|
[31]
|
Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543-568.
Google Scholar
|
[32]
|
M.Y. Li and A.G. Lim, Modelling the role of tax expression in HTLV-I persistence in vivo, Bull. Math. Biol., 2011, 73, 3008-3029.
Google Scholar
|
[33]
|
A.G. Lim and P.K. Mani, HTLV-I infection:A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 2014, 352, 92-108.
Google Scholar
|
[34]
|
X. Lai and X. Zou, Repulsion effect on superinfecting virions by infected cells, Bull. Math. Biol., 2014, 76(11), 2806-2833.
Google Scholar
|
[35]
|
S. Ma, Traveling wavefronts for delayed reaction-diffusion models via a fixed point theorem, J. Differ. Equ., 2001, 171(2), 294-314.
Google Scholar
|
[36]
|
C.C. Mccluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 2006, 3(4), 603-614.
Google Scholar
|
[37]
|
M. Matsuoka and P.L. Green, The HBZ gene, a key player in HTLV-I pathogenesis, Retrovirology, 2009, 6(1), 6-71.
Google Scholar
|
[38]
|
M.A. Nowak, S. Bonhoeffer, A.M. Hill, R. Boehme, H.C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4398-4402.
Google Scholar
|
[39]
|
M.A. Nowak and C.R.M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 1996, 272, 74-79.
Google Scholar
|
[40]
|
M.A. Nowak and R.M. May, Virus Dynamics:Mathematical Principles of Immunology and Virology, London:Oxford University Press, 2000.
Google Scholar
|
[41]
|
K.W. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations, Trans. Am. Math. Soc., 1987, 302(2), 587-615.
Google Scholar
|
[42]
|
H.L. Smith, Monotone dynamic models:an introduction to the theory of competitive and cooperative models, Math Surveys Monogr, vol 41. American Mathematical Society, Providence, RI, 1995.
Google Scholar
|
[43]
|
H.L. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 2001, 47(9), 6169-6179.
Google Scholar
|
[44]
|
H. Shu, L. Wang and J. Watmough, Global Stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 2013, 73(3), 1280-1302.
Google Scholar
|
[45]
|
H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 2009, 70(1), 188-211.
Google Scholar
|
[46]
|
S. Tattermusch and C.R.M. Bangham, HTLV-1 infection:what determines the risk of inflammatory disease?, Trends Microbiol., 2012, 20(10), 494-500.
Google Scholar
|
[47]
|
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29-48.
Google Scholar
|
[48]
|
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
Google Scholar
|
[49]
|
J. Wu and X. Zou, Travelling wave fronts of reaction diffusion models with delay, J. Dynam. Differ. Equ., 2001, 13(3), 651-687.
Google Scholar
|
[50]
|
K. Wang and W. Wang, Dynamics of an HBV system with diffusion and delay, J. Theor. Biol., 2008, 253(1), 36-44.
Google Scholar
|
[51]
|
S. Wang, X. Feng and Y. He, Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence, Acta Math. Sci., 2011, 31(5), 1959-1967.
Google Scholar
|
[52]
|
W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 2011, 71(1), 147-168.
Google Scholar
|
[53]
|
W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic model, SIAM J. Appl. Dyn. Syst., 2012, 11(4), 1652-1673.
Google Scholar
|
[54]
|
F. Wang, Y. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 2014, 93, 2312-2329.
Google Scholar
|
[55]
|
W. Wang, W. Ma and X. Lai, Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis, Nonlinear Anal. Real World Appl., 2017, 33, 253-283.
Google Scholar
|
[56]
|
R. Xu and Z. Ma, An HBV system with diffusion and time delay, J. Theor. Biol., 2009, 257(3), 499-509.
Google Scholar
|
[57]
|
X. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
Google Scholar
|
[58]
|
Y. Zhang and Z. Xu, Dynamics of a diffusive HBV system with delayed Beddington-DeAngelis response, Nonlinear Anal. Real World Appl., 2014, 15, 118-139.
Google Scholar
|
[59]
|
T. Zhang, X. Meng and T. Zhang, Global analysis for a delayed SIV model with direct and envitonmental tranmissions, J. Appl. Anal. Comput., 2016, 6(2), 479-491.
Google Scholar
|
[60]
|
C. Zhu, W. Li and F. Yang, Traveling waves of a reaction-diffusion SIRQ epidemic model with relapse, J. Appl. Anal. Comput., 2017, 7(1), 147-171.
Google Scholar
|