[1]
|
M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized nonlinear incidence, Math. Biosic., 2004, 189, 75-96.
Google Scholar
|
[2]
|
M. E. Alexander and S. M. Moghadas, Bifurcation analysis of an SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 2005, 65, 1794-1816.
Google Scholar
|
[3]
|
J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 2003, 64, 260-276.
Google Scholar
|
[4]
|
R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plan, Selecta Math. Sov., 1981, 1, 373-388.
Google Scholar
|
[5]
|
R. Bogdanov, Versal deformations of a singular point on the plan in the case of zero eigen-values, Selecta Math. Sov., 1981, 1, 389-421.
Google Scholar
|
[6]
|
F. Brauer, Backward bifurcation in simple vaccination models, J. Math. Anal. Appl., 2004, 289, 418-431.
Google Scholar
|
[7]
|
F. Brauer, Backward bifurcations in simple vaccination/treatment models, J. Biol. Dyn., 2011, 5(5), 410-418.
Google Scholar
|
[8]
|
C. Castillo-Chavez and B. J. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361-404.
Google Scholar
|
[9]
|
W. R. Derrick and P. van den Driessche, Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconsant population, Discrete Contin. Dyn. Syst. Ser. B., 2003, 3, 299-309.
Google Scholar
|
[10]
|
O. Diekmann, J. A. P. Heesterbeek and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 1990, 28, 365-382.
Google Scholar
|
[11]
|
P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol., 2000, 40, 525-540.
Google Scholar
|
[12]
|
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease, Math. Biosci., 2002, 180(1-2), 29-48.
Google Scholar
|
[13]
|
J. C. Eckalbar and W. L. Eckalbar, Dynamics of an epidemic model with quadratic treatment, Nonlinear Anal.:Real World Appl., 2011, 12, 320-332.
Google Scholar
|
[14]
|
J. Guckenheimer and P. J. Holmes, Nonlinear oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1996.
Google Scholar
|
[15]
|
J. Guckenheimer and Y. A. Kuznetsov, Bogdanov-Takens bifurcation, Scholarpedia, 2007, 2(1), 1854.
Google Scholar
|
[16]
|
K. P. Hadeler and P. van den Driessche, Backward bifurcation of in epidemic control, Math. Biosci., 1997, 146, 15-35.
Google Scholar
|
[17]
|
M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Springer-Verlag, New York, 2013.
Google Scholar
|
[18]
|
Z. X. Hu, S. Liu and H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Anal.:Real World Appl., 2008, 9, 2302-2312.
Google Scholar
|
[19]
|
Z. X. Hu, P. Bi, W. B. Ma and S. G. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 2011, 15(1), 93-112.
Google Scholar
|
[20]
|
J. Hui and D.M. Zhu, Global stability and periodicity on SIS epidemic models with backward bifurcation, Comp. Math. Appl., 2005, 50, 1271-1290.
Google Scholar
|
[21]
|
Y. Jin, W. D. Wang and S. W. Xiao, An SIRS model with a nonlinear incidence rate, Chaos, Solitons and Fractals, 2007, 34, 1482-1497.
Google Scholar
|
[22]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1998.
Google Scholar
|
[23]
|
D. Lacitignola, Saturated treatments and measles resurgence episodes in South Africa:a possible linkage, Math. Biosci. Eng., 2013, 10, 1135-1157.
Google Scholar
|
[24]
|
G. H. Li and W. D. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Math. Comput., 2009, 214, 411-423.
Google Scholar
|
[25]
|
X. Z. Li, W. S. Li and M. Ghosh, Stability and bifurcation of an SIS epidemic model with treatment, Chaos, Solitons and Fractals, 2009, 42, 2822-2832.
Google Scholar
|
[26]
|
W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 1986, 23, 187-204.
Google Scholar
|
[27]
|
X. B. Liu and L. J. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate, Nonlinear Anal.:Real World Appl., 2012, 13(6), 2671-2679.
Google Scholar
|
[28]
|
M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology, J. Math. Biol., 1996, 35, 21-36.
Google Scholar
|
[29]
|
M. Martcheva and H. R. Thieme, Progression age enhance backward bifurcation in an epidemic model with superinfection, J. Math. Biol., 2003, 46, 385-410.
Google Scholar
|
[30]
|
J. Mena-Lorca and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 1992, 30, 693-716.
Google Scholar
|
[31]
|
S. G. Ruan and W. D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 2003, 188, 135-163.
Google Scholar
|
[32]
|
M. A. Safi, A. B. Gumel and E. H. Elbasha, Qualitative analysis of an agestructured SEIR epidemic model with treatment, Appl. Math. Comput., 2013, 219(22), 10627-10642.
Google Scholar
|
[33]
|
Z. G. Song, J. Xu and Q. H. Li, Local and global bifurcations in an SIRS epidemic model, Appl. Math. Comput., 2009, 214(2), 534-547.
Google Scholar
|
[34]
|
F. Takens, Forced oscillations and bifurcation, in:Applications of Global Analysis I, Comm. Math. Inst. Rijksuniversitat Utrecht., 1974, 3, 1-59.
Google Scholar
|
[35]
|
Y. L. Tang, D.Q. Huang, S.G. Ruan and W.N. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 2008, 2, 621-639.
Google Scholar
|
[36]
|
W. D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 2006, 201, 58-71.
Google Scholar
|
[37]
|
W. D. Wang and S. G. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 2004, 291, 775-793.
Google Scholar
|
[38]
|
Z. W. Wang, Backward bifurcation in simple SIS model, Acta Math. Appl. Sin. Engl. Ser., 2009, 25, 127-136.
Google Scholar
|
[39]
|
J. J. Wei and J. A. Cui, Dynamic of SIS epidemic model with the standard incidence rate and saturated treatment function, Int. J. Biomath., 2012, 3, 1-18.
Google Scholar
|
[40]
|
Y. J. Xiao, W. P. Zhang, G. F. Deng and Z. H. Liu, Stability and BogdanovTakens Bifurcation of an SIS Epidemic Model with Saturated Treatment Function, Math. Probl. Eng., 2015, DOI:10.1155/2015/745732.
Google Scholar
|
[41]
|
L. Xue and S. Caterina, The network level reproduction number for infectious diseases with both vertical and horizontal transmission, Math. Biosci., 2013, 243, 67-80.
Google Scholar
|
[42]
|
J. A. Yorke and W. P. London, Recurrent outbreaks of measles, chickenpox and mumps Ⅱ, Amer. J. Epidemiol., 1973, 98, 469-482.
Google Scholar
|
[43]
|
X. Zhang and X. N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 2008, 348, 433-443.
Google Scholar
|
[44]
|
X. Zhang and X. N. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonlinear Anal.:Real World Appl., 2009, 10, 565-575.
Google Scholar
|
[45]
|
L. H. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal.:Real World Appl., 2012, 13, 312-324.
Google Scholar
|
[46]
|
T. T. Zhou, W. P. Zhang and Q. Y. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Appl. Math. Comput., 2014, 226, 288-305.
Google Scholar
|
[47]
|
X. Y. Zhou and J. A. Cui, Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(11), 4438-4450.
Google Scholar
|
[48]
|
Y. G. Zhou, D. M. Xiao and Y. L. Li, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 2007, 32(5), 1903-1915.
Google Scholar
|
[49]
|
MATLAB, Version 8.5.0(R2015a), The MathWorks Inc., Natick, MA, 2015.
Google Scholar
|