[1]
|
R. Arditi and H. R. Akcakaya, Underestimation of mutual interference of predators, Oecologia, 1990, 83(3), 358-361.
Google Scholar
|
[2]
|
R. Arditi and A. A. Berryman, The biological control paradox, Tree, 1991, 6(7), 32-32.
Google Scholar
|
[3]
|
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:ratiodependence, J. Theor. Biol., 1989, 139(3), 311-326.
Google Scholar
|
[4]
|
R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes:a case for ratio-dependent predation models, Am. Nat., 1991, 138(5), 1287-1296.
Google Scholar
|
[5]
|
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 1975, 44(1), 331-340.
Google Scholar
|
[6]
|
E. Beretta and Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal-theor., 1998, 32(3), 381-408.
Google Scholar
|
[7]
|
A. A. Berryman, The origins and evolution of predator-prey theory, Ecology, 1992, 73(5), 1530-1535.
Google Scholar
|
[8]
|
H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
Google Scholar
|
[9]
|
M. Freeze, Y. Chang, and W. Feng, Analysis of dynamics in a complex food chain with ratio-dependent functional response, J. Appl. Anal. Comput., 2014, 4(1), 69-87.
Google Scholar
|
[10]
|
W. M. Getz, Population dynamics:a per capita resource approach, J. Theor. Biol., 1984, 108(4), 623-643.
Google Scholar
|
[11]
|
J. M. Ginoux, B. Rossetto and J. L. Jamet, Chaos in a three-dimensional Volterra-Gause model of predator-prey type, Int. J. Bifurcat. Chaos., 2005, 15(5), 1689-1708.
Google Scholar
|
[12]
|
A. A. Gomes, E. Manica and M. C. Varriale, Applications of chaos control techniques to a three-species food chain, Chaos, Soliton. Fract., 2008, 35(4), 432-441.
Google Scholar
|
[13]
|
H. B. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 2006, 3(3), 513-525.
Google Scholar
|
[14]
|
I. Hanski, The functional response of predators worries about scale, TREE, 1991, 6(5), 141-142.
Google Scholar
|
[15]
|
S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain and its applications to biological control, Math. Biosci., 2003, 181(1), 55-83.
Google Scholar
|
[16]
|
G. P. Hu and X. L. Li, Stability and Hopf bifurcation for a delayed predator-prey model disease in the prey. Chaos, Soliton. Fract., 2012, 45(3), 229-237.
Google Scholar
|
[17]
|
J. H. Huang and X. F. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. J. Math. Anal. Appl., 2002, 271(2), 455-466.
Google Scholar
|
[18]
|
W. H. Jiang and J. J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback, Chaos, Soliton. Fract., 2005, 23(3), 817-831.
Google Scholar
|
[19]
|
W. H. Jiang and J. J. Wei, Bifurcation analysis in van der Pol's oscillator with delayed feedback, J. Comput. Appl. Math., 2008, 213(2), 604-615.
Google Scholar
|
[20]
|
C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratiodependent predator-prey models, B. Math. Biol., 1999, 61(1), 19-32.
Google Scholar
|
[21]
|
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 1998, 36(4), 389-406.
Google Scholar
|
[22]
|
M. Y. Li and H. Y. Shu, Global dynamics of an in-host viral model with intracellular delay, B. Math. Biol., 2010, 72(6), 1492-1505.
Google Scholar
|
[23]
|
H. S. Mahato and M. Bohm, Global existence and uniqueness of solution for a system of semilinear diffusion-reaction equations, J. Appl. Anal. Comp., 2013, 3(4), 357-376.
Google Scholar
|
[24]
|
M. C. Varriale and A. A. Gomes, A study of a three species food chain, Ecol. Model., 1998, 110(2), 119-133.
Google Scholar
|
[25]
|
H. B. Wang and W. H. Jiang, Hopf-pitchfork bifurcation in van der Pol's oscillator with nonlinear delayed feedback, J. Math. Anal. Appl., 2010, 368(1), 9-18.
Google Scholar
|
[26]
|
J. N. Wang and W. H. Jiang. Bogdanov-Takens singularity in the comprehensive national power model with time delays, J. Appl. Anal. Comp., 2013, 3(1), 81-94.
Google Scholar
|
[27]
|
J. J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays, Physica D., 2004, 198(1-2), 106-119.
Google Scholar
|
[28]
|
D. M. Xiao and W. X. Li, Stability and bifurcation in a delayed ratio-dependent predator-prey system, P. Edinburgh Math. Soc., 2003, 46(1), 205-220.
Google Scholar
|
[29]
|
R. Xu and M. A. J. Chaplain, Persistence and global stability in a delayed Gause-type predator-prey system without dominating instantaneous negative feedbacks, J. Math. Anal. Appl., 2002, 265(1), 148-162.
Google Scholar
|
[30]
|
T. S. Yi and X. F. Zou, Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain, J. Diff. Eqs., 2011, 251(9), 2598-2611.
Google Scholar
|