2017 Volume 7 Issue 3
Article Contents

F. Adrián F. Tojo, Pedro Torres. GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1127-1138. doi: 10.11948/2017070
Citation: F. Adrián F. Tojo, Pedro Torres. GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1127-1138. doi: 10.11948/2017070

GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS

  • Fund Project:
  • In this paper we develop a way of obtaining Green's functions of partial differential equations with linear involutions by reducing the equation to a higher-order PDE without involutions. The developed theory is applied to a model of heat transfer in a conducting plate which is bent in half.
    MSC: 35R10;35J08
  • 加载中
  • [1] A. R. Amir-Moéz and D. W. Palmer, Characterization of linear involutions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 1993, 4, 23-24.

    Google Scholar

    [2] M. S. Burlutskaya and A. Khromov, Initial-boundary value problems for firstorder hyperbolic equations with involution, Dokl. Math., 2011, 84(3), 783-786.

    Google Scholar

    [3] A. Cabada and F. A. F. Tojo, Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., 2013, 78, 32-46.

    Google Scholar

    [4] A. Cabada and F. A. F. Tojo, Green's functions for reducible functional differential equations, Bull. Malays. Math. Sci. Soc., 2016.

    Google Scholar

    [5] V. Fock, Konfigurationsraum und zweite quantelung, Zeitschrift für Physik, 1932, 75(9-10), 622-647.

    Google Scholar

    [6] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems:positivity preserving and nonlinear higher order elliptic equations in bounded domains, 1991, Springer Science & Business Media, 2010.

    Google Scholar

    [7] J. W. Helton, M. de Oliveira, M. Stankus and R. L. Miller, Ncalgebra-version 4.0.6, 2015.

    Google Scholar

    [8] M. Kiranea and N. Al-Saltic, Inverse problems for a nonlocal wave equation with an involution perturbation, Journal of Nonlinear Sciences and Applications, 2016, 9(3), 1243-1251.

    Google Scholar

    [9] A. Polyanin, Handbook of linear partial differential equations for engineers and scientists, CRC Press Company, 2002.

    Google Scholar

    [10] L. Silberstein, Solution of the equation f(x)=f(1/x), Lond. Edinb. Dubl. Phil. Mag., 1940, 30(200), 185-186.

    Google Scholar

    [11] J. Wiener, Generalized solutions of functional differential equations, World Scientific, 1993.

    Google Scholar

Article Metrics

Article views(2529) PDF downloads(1079) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint