F. Adrián F. Tojo, Pedro Torres. GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1127-1138. doi: 10.11948/2017070
Citation: |
F. Adrián F. Tojo, Pedro Torres. GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(3): 1127-1138. doi: 10.11948/2017070
|
GREEN'S FUNCTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH INVOLUTIONS
-
1 Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, Spain;
-
2 Departamento de Matemática Aplicada, Facultad de Ciencias, Universidade de Granada, Spain
-
Abstract
In this paper we develop a way of obtaining Green's functions of partial differential equations with linear involutions by reducing the equation to a higher-order PDE without involutions. The developed theory is applied to a model of heat transfer in a conducting plate which is bent in half.
-
-
References
[1]
|
A. R. Amir-Moéz and D. W. Palmer, Characterization of linear involutions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 1993, 4, 23-24.
Google Scholar
|
[2]
|
M. S. Burlutskaya and A. Khromov, Initial-boundary value problems for firstorder hyperbolic equations with involution, Dokl. Math., 2011, 84(3), 783-786.
Google Scholar
|
[3]
|
A. Cabada and F. A. F. Tojo, Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., 2013, 78, 32-46.
Google Scholar
|
[4]
|
A. Cabada and F. A. F. Tojo, Green's functions for reducible functional differential equations, Bull. Malays. Math. Sci. Soc., 2016.
Google Scholar
|
[5]
|
V. Fock, Konfigurationsraum und zweite quantelung, Zeitschrift für Physik, 1932, 75(9-10), 622-647.
Google Scholar
|
[6]
|
F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems:positivity preserving and nonlinear higher order elliptic equations in bounded domains, 1991, Springer Science & Business Media, 2010.
Google Scholar
|
[7]
|
J. W. Helton, M. de Oliveira, M. Stankus and R. L. Miller, Ncalgebra-version 4.0.6, 2015.
Google Scholar
|
[8]
|
M. Kiranea and N. Al-Saltic, Inverse problems for a nonlocal wave equation with an involution perturbation, Journal of Nonlinear Sciences and Applications, 2016, 9(3), 1243-1251.
Google Scholar
|
[9]
|
A. Polyanin, Handbook of linear partial differential equations for engineers and scientists, CRC Press Company, 2002.
Google Scholar
|
[10]
|
L. Silberstein, Solution of the equation f(x)=f(1/x), Lond. Edinb. Dubl. Phil. Mag., 1940, 30(200), 185-186.
Google Scholar
|
[11]
|
J. Wiener, Generalized solutions of functional differential equations, World Scientific, 1993.
Google Scholar
|
-
-
-