[1]
|
E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological liquids, Arch. Ration. Mech. Anal., 2002, 164, 213-259.
Google Scholar
|
[2]
|
T. Adamowicz and O. Toivanen, Hölder continuity of quasiminimizers with nonstandard growth, Nonlinear Anal., 2015, 125, 433-456.
Google Scholar
|
[3]
|
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
Google Scholar
|
[4]
|
S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity:existence, uniqueness and localization properties of solutions, Nonlinear Anal., 2005, 60, 515-545.
Google Scholar
|
[5]
|
S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez. VⅡ, Sci. Mat., 2006, 52(1), 19-36.
Google Scholar
|
[6]
|
S. N. Antontsev and S. I. Shmarev, On the localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneration, Siberian Math. J., 2005, 5, 765-782.
Google Scholar
|
[7]
|
S. N. Antontsev and S. I. Shmarev, Elliptic equations and systems with nonstandard growth conditions:Existence, uniqueness and localization properties of solutions, Nonlinear Anal., 2006, 65, 728-761.
Google Scholar
|
[8]
|
Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 2006, 66, 1383-1406.
Google Scholar
|
[9]
|
L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, 2002.
Google Scholar
|
[10]
|
Yu. A. Dubinskii, Weak convergence in nonlinear elliptic and parabolic equations, (Russian)Mat.Sb., 1965, 67(109), 609-642.
Google Scholar
|
[11]
|
X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 2001, 263, 424-446.
Google Scholar
|
[12]
|
X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces Wk,p(x), J. Math. Anal. Appl., 2001, 262(2), 749-760.
Google Scholar
|
[13]
|
X. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x) growth conditions, Nonlinear Anal., 2000, 39(7), 807-816.
Google Scholar
|
[14]
|
Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 2016, 5(2), 121-132.
Google Scholar
|
[15]
|
S. Fucik and A. Kufner, Nonlinear Differential Equations, Elsevier, New York, 1980.
Google Scholar
|
[16]
|
M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta. Math., 1987, 59, 245-248.
Google Scholar
|
[17]
|
H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math., 1976, 4, 37-51.
Google Scholar
|
[18]
|
O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41, 592-618.
Google Scholar
|
[19]
|
J. L. Lions, Queques Methodes de Resolution des Problemes Aux Limites Non lineaires, Dunod and Gauthier-Villars, Paris, 1969.
Google Scholar
|
[20]
|
P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 1989, 105, 267-284.
Google Scholar
|
[21]
|
G. de Marsily, Quantitative Hydrogeology. Groundwater Hydrology for Engineers, Academic Press, London, 1986.
Google Scholar
|
[22]
|
J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.
Google Scholar
|
[23]
|
V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents:Variational methods and Quantitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
Google Scholar
|
[24]
|
V. Rădulescu, Nonlinear elliptic equations with variable exponent:old and new, Nonlinear Anal., 2015, 121, 336-369.
Google Scholar
|
[25]
|
D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 2015, 13(6), 645-661.
Google Scholar
|
[26]
|
M. M. Rao, Measure Theory and Integration, John Wiley & Sons, New York, 1984.
Google Scholar
|
[27]
|
P. A. Raviart, Sur la resolution et l'approximation de certaines equations paraboliques non lineaires, Arch. Rational Mech. Anal., 1967, 25, 64-80.
Google Scholar
|
[28]
|
M. Ruzicka, Electrorheological Fluids:Modeling and Mathematical Theory, In Lecture Notes in Mathematics, Springer, Berlin, 2000.
Google Scholar
|
[29]
|
K. N. Soltanov and J. Sprekels, Nonlinear equations in non-reflexive Banach spaces and strongly nonlinear equations, Adv. Math. Sci. Appl., 1999, 9(2), 939-972.
Google Scholar
|
[30]
|
K. N. Soltanov and M. A. Ahmadov, On nonlinear parabolic equation in nondivergent form with implicit degeneration and embedding theorems, 2012, arXiv:1207.7063v1[math.AP].
Google Scholar
|
[31]
|
K. N. Soltanov, Some imbedding theorems and nonlinear differential equations, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 1999, 19(5), Math. Mech., 2000, 125-146, (Reviewer:H. Triebel).
Google Scholar
|
[32]
|
K. N. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems, Nonlinear Anal., 2006, 65, 2103-2134.
Google Scholar
|
[33]
|
K. N. Soltanov, On noncoercive semilinear equations, Nonlinear Anal. Hybrid Syst., 2008, 2, 344-358.
Google Scholar
|
[34]
|
K. N. Soltanov, Some Applications of Nonlinear Analysis to Differential Equations, (in Russian)ELM, Baku, 2002.
Google Scholar
|
[35]
|
K. N. Soltanov, Some embedding theorems and its applications to nonlinear equations, Differensial'nie Uravnenia., 1984, 20(12), 2181-2184.
Google Scholar
|
[36]
|
K. N. Soltanov, On some modification Navier-Stokes equations, Nonlinear Anal., 2003, 52(3), 769-793.
Google Scholar
|
[37]
|
Z. Yücedağ, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 2015, 4, 285-293.
Google Scholar
|
[38]
|
V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 1997, 5(1), 105-116.
Google Scholar
|
[39]
|
V. V. Zhikov, On the technique for passing to the limit in nonlinear elliptic equations, Functional Anal. and Its App., 2009, 43(2), 96-112.
Google Scholar
|
[40]
|
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 1987, 29, 33-36.
Google Scholar
|