[1]
|
A. Al-Mohy and N. J. Higham, A new scaling and modified squaring algorithm for matrix functions, SIAM J. Matrix Anal. Appl., 2009, 31(3), 970-989.
Google Scholar
|
[2]
|
A. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 2011, 33(2), 488-511.
Google Scholar
|
[3]
|
A. C. Antoulas and D. C. Sorensen, Approximation of large-scale dynamical systems:an overview, Int. J. Appl. Math. Comput. Sci, 2001, 11(5), 1093-1121.
Google Scholar
|
[4]
|
A. C. Antoulas, Approximation of large-scale dynamical Systems, SIAM, Philadelphia, 2009.
Google Scholar
|
[5]
|
M. Botchev, V. Grimm, and M. Hochbruck, Residual, restarting, and Richardson iteration for the matrix exponential, SIAM J. Sci. Comput., 2013, 35(3), 1376-1397.
Google Scholar
|
[6]
|
M. A. Botchev, A block Krylov subspace time-exact solution method for linear ordinary differential equation systems, Numer. Linear Algebra Appl., 2013, 20(4), 557-574.
Google Scholar
|
[7]
|
E. Celledoni and I. Moret, A Krylov projection method for systems of ODEs, Appl. Numer. Math., 1997, 24(2), 365-378.
Google Scholar
|
[8]
|
Y. H. Cong and D. P. Li, Block Krylov subspace methods for approximating the linear combination of φ-functions arising in exponential integrators, Comput. Math. Appl., 2016, 72(4), 846-855.
Google Scholar
|
[9]
|
V. Druskin, C. Lieberman and M. Zaslavsky, On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems, SIAM J. Sci. Comput., 2010, 32(5), 2485-2496.
Google Scholar
|
[10]
|
M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of matrix function, SIAM J. Numer. Anal., 2006, 44(6), 2481-2504.
Google Scholar
|
[11]
|
J. Eshof and M, Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 2006, 27(4), 1438-1457.
Google Scholar
|
[12]
|
A. Frommer, S. Güttel and M. Schweitzer, Efficient and stable Arnoldi restarts for matrix functions based on quadrture, SIAM J. Matrix Anal. Appl., 2014, 35(2), 661-683.
Google Scholar
|
[13]
|
T. Göckler and V. Grimm, Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators, SIAM J. Numer. Anal., 2013, 51(4), 2189-2213.
Google Scholar
|
[14]
|
T. Göckler, Rational Krylov subspace methods for φ-functions in exponential integrators, PhD thesis, Karlsruhe Institute of Technology (KIT), 2014.
Google Scholar
|
[15]
|
V. Grimm, Resolvent Krylov subspace approximation to operator functions, BIT Numer. Math., 2012, 52(3), 639-659.
Google Scholar
|
[16]
|
S. Güttel, Rational Krylov method for operator functions, Ph.D. thesis, Fakultät füt Mathematik und Informatik der Technischen Universität Bergakademie Freiberg, 2010.
Google Scholar
|
[17]
|
N. J. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM J. Matrix Anal. Appl., 2005, 26(4), 1179-1193.
Google Scholar
|
[18]
|
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 1997, 34(5), 1912-1925.
Google Scholar
|
[19]
|
M. Hochbruck,and A. Ostermann, Exponential Integrators, Acta Numer., 2010, 19(19), 209-286.
Google Scholar
|
[20]
|
N. J. Higham, Functions of matrices:theory and computation, SIAM, Philadelphia, 2008.
Google Scholar
|
[21]
|
Z. Jia and H. Lv, A posteriori error estimates of Krylov subspace approximations to matrix functions, Numer. Algor., 2015, 69(1), 1-28.
Google Scholar
|
[22]
|
H. M. Kim and R. R. Craig, Jr, Structural dynamics analysis using an unsymmetric block Lanczos algorithm, Int. J. for Numer. Meth. Eng., 1988, 26(10), 2305-2318.
Google Scholar
|
[23]
|
L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for matrix function evaluations, Numer. Linear Algebra Appl., 2010, 17(4), 615-638.
Google Scholar
|
[24]
|
B. V. Minchev and W. M. Wright, A review of exponential integrators for first order semi-linear problems, Tech. report 2/05, Department of Mathematics, NTNU, 2005.
Google Scholar
|
[25]
|
C. Moler, C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 2003, 20(4), 3-49.
Google Scholar
|
[26]
|
I. Moret and P. Novati, An interpolatory approximations of the matrix exponential based on Faber polynomials, J. Comput. Appl. Math., 2001, 131(1-2), 361-380.
Google Scholar
|
[27]
|
I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 2004, 44(3), 595-615.
Google Scholar
|
[28]
|
I. Moret and M. Popolizio, The restarted shift-and-invert Krylov method for matrix function, Numer. Linear Algebra Appl., 2014, 21(1), 68-80.
Google Scholar
|
[29]
|
J. Niesen and W. M. Wright, Algorithm 919:A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators, ACM Trans. Math. Software, 2012, 38(3), 1-19.
Google Scholar
|
[30]
|
B. Nour-Omid, Application of the Lanczos algorithm, Comput. Phy. Comm, 1989, 53(1-3), 157-168.
Google Scholar
|
[31]
|
R. B. Sidje, Expokit:A software package for computing matrix exponentials, ACM Trans. Math. Software, 1998, 24(1), 130-156.
Google Scholar
|
[32]
|
B. Skaflestad and W. M. Wright, The scaling and modified squaring method for matrix functions related to the exponential, Appl. Numer. Math., 2009, 59(3), 783-799.
Google Scholar
|
[33]
|
T. Schmelzer, The fast evaluation of matrix functions for exponential integrators, PhD thesis, University of Oxford, 2007.
Google Scholar
|
[34]
|
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 1992, 29(1), 209-228.
Google Scholar
|
[35]
|
Y. Saad, Iterative Methods for sparse linear systems, 2nd edition, SIAM, Philadelphia, 2003.
Google Scholar
|
[36]
|
H. Tal-ezer, On restart and error estimation for Krylov approximation of !=f(A)v, SIAM J. Sci. Comput., 2007, 29(6), 2426-2441.
Google Scholar
|
[37]
|
G. Wu, H. Pang and J. Sun, Preconditioning the Restarted and Shifted Block FOM Algorithm for Matrix Exponential Computation, Mathematics, 2014, 1-24.
Google Scholar
|
[38]
|
Q. Ye, Error bounds for the Lanczos methods for approximating matrix exponentials, SIAM. J. Numer Anal., 2013, 51(1), 68-87.
Google Scholar
|