2017 Volume 7 Issue 4
Article Contents

Dongping Li, Yuhao Cong. APPROXIMATION OF THE LINEAR COMBINATION OF φ-FUNCTIONS USING THE BLOCK SHIFT-AND-INVERT KRYLOV SUBSPACE METHOD[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1402-1416. doi: 10.11948/2017085
Citation: Dongping Li, Yuhao Cong. APPROXIMATION OF THE LINEAR COMBINATION OF φ-FUNCTIONS USING THE BLOCK SHIFT-AND-INVERT KRYLOV SUBSPACE METHOD[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1402-1416. doi: 10.11948/2017085

APPROXIMATION OF THE LINEAR COMBINATION OF φ-FUNCTIONS USING THE BLOCK SHIFT-AND-INVERT KRYLOV SUBSPACE METHOD

  • Fund Project:
  • In this paper, we develop an algorithm in which the block shiftand-invert Krylov subspace method can be employed for approximating the linear combination of the matrix exponential and related exponential-type functions. Such evaluation plays a major role in a class of numerical methods known as exponential integrators. We derive a low-dimensional matrix exponential to approximate the objective function based on the block shiftand-invert Krylov subspace methods. We obtain the error expansion of the approximation, and show that the variants of its first term can be used as reliable a posteriori error estimates and correctors. Numerical experiments illustrate that the error estimates are efficient and the proposed algorithm is worthy of further study.
    MSC: 65L05;65F10;65F30
  • 加载中
  • [1] A. Al-Mohy and N. J. Higham, A new scaling and modified squaring algorithm for matrix functions, SIAM J. Matrix Anal. Appl., 2009, 31(3), 970-989.

    Google Scholar

    [2] A. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 2011, 33(2), 488-511.

    Google Scholar

    [3] A. C. Antoulas and D. C. Sorensen, Approximation of large-scale dynamical systems:an overview, Int. J. Appl. Math. Comput. Sci, 2001, 11(5), 1093-1121.

    Google Scholar

    [4] A. C. Antoulas, Approximation of large-scale dynamical Systems, SIAM, Philadelphia, 2009.

    Google Scholar

    [5] M. Botchev, V. Grimm, and M. Hochbruck, Residual, restarting, and Richardson iteration for the matrix exponential, SIAM J. Sci. Comput., 2013, 35(3), 1376-1397.

    Google Scholar

    [6] M. A. Botchev, A block Krylov subspace time-exact solution method for linear ordinary differential equation systems, Numer. Linear Algebra Appl., 2013, 20(4), 557-574.

    Google Scholar

    [7] E. Celledoni and I. Moret, A Krylov projection method for systems of ODEs, Appl. Numer. Math., 1997, 24(2), 365-378.

    Google Scholar

    [8] Y. H. Cong and D. P. Li, Block Krylov subspace methods for approximating the linear combination of φ-functions arising in exponential integrators, Comput. Math. Appl., 2016, 72(4), 846-855.

    Google Scholar

    [9] V. Druskin, C. Lieberman and M. Zaslavsky, On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems, SIAM J. Sci. Comput., 2010, 32(5), 2485-2496.

    Google Scholar

    [10] M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of matrix function, SIAM J. Numer. Anal., 2006, 44(6), 2481-2504.

    Google Scholar

    [11] J. Eshof and M, Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 2006, 27(4), 1438-1457.

    Google Scholar

    [12] A. Frommer, S. Güttel and M. Schweitzer, Efficient and stable Arnoldi restarts for matrix functions based on quadrture, SIAM J. Matrix Anal. Appl., 2014, 35(2), 661-683.

    Google Scholar

    [13] T. Göckler and V. Grimm, Convergence Analysis of an Extended Krylov Subspace Method for the Approximation of Operator Functions in Exponential Integrators, SIAM J. Numer. Anal., 2013, 51(4), 2189-2213.

    Google Scholar

    [14] T. Göckler, Rational Krylov subspace methods for φ-functions in exponential integrators, PhD thesis, Karlsruhe Institute of Technology (KIT), 2014.

    Google Scholar

    [15] V. Grimm, Resolvent Krylov subspace approximation to operator functions, BIT Numer. Math., 2012, 52(3), 639-659.

    Google Scholar

    [16] S. Güttel, Rational Krylov method for operator functions, Ph.D. thesis, Fakultät füt Mathematik und Informatik der Technischen Universität Bergakademie Freiberg, 2010.

    Google Scholar

    [17] N. J. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM J. Matrix Anal. Appl., 2005, 26(4), 1179-1193.

    Google Scholar

    [18] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 1997, 34(5), 1912-1925.

    Google Scholar

    [19] M. Hochbruck,and A. Ostermann, Exponential Integrators, Acta Numer., 2010, 19(19), 209-286.

    Google Scholar

    [20] N. J. Higham, Functions of matrices:theory and computation, SIAM, Philadelphia, 2008.

    Google Scholar

    [21] Z. Jia and H. Lv, A posteriori error estimates of Krylov subspace approximations to matrix functions, Numer. Algor., 2015, 69(1), 1-28.

    Google Scholar

    [22] H. M. Kim and R. R. Craig, Jr, Structural dynamics analysis using an unsymmetric block Lanczos algorithm, Int. J. for Numer. Meth. Eng., 1988, 26(10), 2305-2318.

    Google Scholar

    [23] L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for matrix function evaluations, Numer. Linear Algebra Appl., 2010, 17(4), 615-638.

    Google Scholar

    [24] B. V. Minchev and W. M. Wright, A review of exponential integrators for first order semi-linear problems, Tech. report 2/05, Department of Mathematics, NTNU, 2005.

    Google Scholar

    [25] C. Moler, C. V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 2003, 20(4), 3-49.

    Google Scholar

    [26] I. Moret and P. Novati, An interpolatory approximations of the matrix exponential based on Faber polynomials, J. Comput. Appl. Math., 2001, 131(1-2), 361-380.

    Google Scholar

    [27] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 2004, 44(3), 595-615.

    Google Scholar

    [28] I. Moret and M. Popolizio, The restarted shift-and-invert Krylov method for matrix function, Numer. Linear Algebra Appl., 2014, 21(1), 68-80.

    Google Scholar

    [29] J. Niesen and W. M. Wright, Algorithm 919:A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators, ACM Trans. Math. Software, 2012, 38(3), 1-19.

    Google Scholar

    [30] B. Nour-Omid, Application of the Lanczos algorithm, Comput. Phy. Comm, 1989, 53(1-3), 157-168.

    Google Scholar

    [31] R. B. Sidje, Expokit:A software package for computing matrix exponentials, ACM Trans. Math. Software, 1998, 24(1), 130-156.

    Google Scholar

    [32] B. Skaflestad and W. M. Wright, The scaling and modified squaring method for matrix functions related to the exponential, Appl. Numer. Math., 2009, 59(3), 783-799.

    Google Scholar

    [33] T. Schmelzer, The fast evaluation of matrix functions for exponential integrators, PhD thesis, University of Oxford, 2007.

    Google Scholar

    [34] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 1992, 29(1), 209-228.

    Google Scholar

    [35] Y. Saad, Iterative Methods for sparse linear systems, 2nd edition, SIAM, Philadelphia, 2003.

    Google Scholar

    [36] H. Tal-ezer, On restart and error estimation for Krylov approximation of !=f(A)v, SIAM J. Sci. Comput., 2007, 29(6), 2426-2441.

    Google Scholar

    [37] G. Wu, H. Pang and J. Sun, Preconditioning the Restarted and Shifted Block FOM Algorithm for Matrix Exponential Computation, Mathematics, 2014, 1-24.

    Google Scholar

    [38] Q. Ye, Error bounds for the Lanczos methods for approximating matrix exponentials, SIAM. J. Numer Anal., 2013, 51(1), 68-87.

    Google Scholar

Article Metrics

Article views(2482) PDF downloads(893) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint