| 
	                    [1]
	                 | 
	            					
																										A. Chen, S. Wen and W. Huang, Existence and orbital stability of periodic wave solutions for the nonlinear Schodinger equation, J. Appl. Anal. Comp., 2012, 2(2), 137-148.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [2]
	                 | 
	            					
																										A. Chen, S. Wen, S. Tang, W. Huang and Z. Qiao, Effects of quadratic singular curves in integrable equations, Stud. Appl. Math., 2015, 134, 24-61.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [3]
	                 | 
	            					
																										S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer, New York, 1981.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [4]
	                 | 
	            					
																										H. Ding and L-Q Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, J. Sound Vib., 2010, 329(17), 3484-3494.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [5]
	                 | 
	            					
																										H. Ding, L-Q Chen and S. P. Yang, Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 2012, 331(10), 2426-2442.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [6]
	                 | 
	            					
																										H. H Dai and X. H. Zhao, Nonlinear traveling waves in a rod composed of a modified Mooney-Rivlin material. I Bifurcation of critical points and the nonsingular case, Proc. R. Soc. Lond. A, 1999, 455, 3845-3874.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [7]
	                 | 
	            					
																										E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277, 212-218.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [8]
	                 | 
	            					
																										I. S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Sixth Edition, Academic Press, New York, 2000.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [9]
	                 | 
	            					
																										J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 2006, 30(3), 700-708.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [10]
	                 | 
	            					
																										M. Ito, An extension of nonlinear evolution equation of KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 1980, 49, 771-778.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [11]
	                 | 
	            					
																										J. B. Li, Singular Traveling Wave Equations:Bifurcations and Exact Solutions. Science Press, Beijing, 2013.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [12]
	                 | 
	            					
																										W. X. Ma and J. H. Lee, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 2009, 42, 1356-1363.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [13]
	                 | 
	            					
																										E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comp. Phys. Commun., 1996, 98, 288-300.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [14]
	                 | 
	            					
																										E. J. Parkes, B. R. Duffy and P. C. Abbott, The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. Lett. A, 2002, 295, 280-286.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [15]
	                 | 
	            					
																										W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 2667-2678.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [16]
	                 | 
	            					
																										S. Shen and Z. Pan, A note on the Jacobi elliptic function expansion method, Phys. Lett. A, 2003, 308, 143-148.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [17]
	                 | 
	            					
																										J. Shen, Shock wave solutions of the compound Burgers-Korteweg-de equation, Appl. Math. Comp., 2008, 96(2), 842-849.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [18]
	                 | 
	            					
																										J. Shen, B. Miao and J. Luo, Bifurcations and Highly Nonlinear Traveling Waves in Periodic Dimer Granular Chains, Math. Method Appl. Sci., 2011, 34(12), 1445-1449.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [19]
	                 | 
	            					
																										A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput Model, 2004, 40(5-6), 499-508.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [20]
	                 | 
	            					
																										Y. Zhang, S. Lai, J. Yin and Y. Wu, The application of the auxiliary equation technique to a generalized mKdV equation with variable coefficients, J. Comput. Appl. Math., 2009, 223, 75-85.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [21]
	                 | 
	            					
																										L. J. Zhang and C. M. Khalique, Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation, Adv. Differ. Equ., 2015, 195.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [22]
	                 | 
	            					
																										L. J. Zhang and C. M. Khalique, Exact solitary wave and periodic wave solutions of the Kaup-Kuper-Schmidt equation, J. Appl. Anal. Comput., 2015, 5(3), 485-495.
							 							Google Scholar
							
						 
											 |