[1]
|
A. Chen, S. Wen and W. Huang, Existence and orbital stability of periodic wave solutions for the nonlinear Schodinger equation, J. Appl. Anal. Comp., 2012, 2(2), 137-148.
Google Scholar
|
[2]
|
A. Chen, S. Wen, S. Tang, W. Huang and Z. Qiao, Effects of quadratic singular curves in integrable equations, Stud. Appl. Math., 2015, 134, 24-61.
Google Scholar
|
[3]
|
S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer, New York, 1981.
Google Scholar
|
[4]
|
H. Ding and L-Q Chen, Galerkin methods for natural frequencies of high-speed axially moving beams, J. Sound Vib., 2010, 329(17), 3484-3494.
Google Scholar
|
[5]
|
H. Ding, L-Q Chen and S. P. Yang, Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 2012, 331(10), 2426-2442.
Google Scholar
|
[6]
|
H. H Dai and X. H. Zhao, Nonlinear traveling waves in a rod composed of a modified Mooney-Rivlin material. I Bifurcation of critical points and the nonsingular case, Proc. R. Soc. Lond. A, 1999, 455, 3845-3874.
Google Scholar
|
[7]
|
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277, 212-218.
Google Scholar
|
[8]
|
I. S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Sixth Edition, Academic Press, New York, 2000.
Google Scholar
|
[9]
|
J. H. He and X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 2006, 30(3), 700-708.
Google Scholar
|
[10]
|
M. Ito, An extension of nonlinear evolution equation of KdV (mKdV) type to higher orders, J. Phys. Soc. Jpn., 1980, 49, 771-778.
Google Scholar
|
[11]
|
J. B. Li, Singular Traveling Wave Equations:Bifurcations and Exact Solutions. Science Press, Beijing, 2013.
Google Scholar
|
[12]
|
W. X. Ma and J. H. Lee, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 2009, 42, 1356-1363.
Google Scholar
|
[13]
|
E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comp. Phys. Commun., 1996, 98, 288-300.
Google Scholar
|
[14]
|
E. J. Parkes, B. R. Duffy and P. C. Abbott, The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. Lett. A, 2002, 295, 280-286.
Google Scholar
|
[15]
|
W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18, 2667-2678.
Google Scholar
|
[16]
|
S. Shen and Z. Pan, A note on the Jacobi elliptic function expansion method, Phys. Lett. A, 2003, 308, 143-148.
Google Scholar
|
[17]
|
J. Shen, Shock wave solutions of the compound Burgers-Korteweg-de equation, Appl. Math. Comp., 2008, 96(2), 842-849.
Google Scholar
|
[18]
|
J. Shen, B. Miao and J. Luo, Bifurcations and Highly Nonlinear Traveling Waves in Periodic Dimer Granular Chains, Math. Method Appl. Sci., 2011, 34(12), 1445-1449.
Google Scholar
|
[19]
|
A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput Model, 2004, 40(5-6), 499-508.
Google Scholar
|
[20]
|
Y. Zhang, S. Lai, J. Yin and Y. Wu, The application of the auxiliary equation technique to a generalized mKdV equation with variable coefficients, J. Comput. Appl. Math., 2009, 223, 75-85.
Google Scholar
|
[21]
|
L. J. Zhang and C. M. Khalique, Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation, Adv. Differ. Equ., 2015, 195.
Google Scholar
|
[22]
|
L. J. Zhang and C. M. Khalique, Exact solitary wave and periodic wave solutions of the Kaup-Kuper-Schmidt equation, J. Appl. Anal. Comput., 2015, 5(3), 485-495.
Google Scholar
|