[1]
|
X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 2016, 36(2), 643-652.
Google Scholar
|
[2]
|
C. Cheng, F. Huang and Y. Li, Affine-periodic solutions and pseudo affineperiodic solutions for differential equations with exponential dichotomy and exponential trichotomy, J. Appl. Anal. Comput., 2016, 6(4), 950-967.
Google Scholar
|
[3]
|
C. De Coster and P. Habets, Two-point boundary value problems:lower and upper solutions, Mathematics in Science and Engineering, 205. Elsevier B. V., Amsterdam, 2006. xii+489 pp.
Google Scholar
|
[4]
|
C. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector differential equations, J. Differential Equations, 1981, 42(2), 186-198.
Google Scholar
|
[5]
|
F. A. Howes, Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems, SIAM J. Math. Anal., 1982, 13(1), 61-80.
Google Scholar
|
[6]
|
T. Küpper, Y. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J. (2), 2000, 52(3), 321-329.
Google Scholar
|
[7]
|
N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math. (2), 1944, 45, 723-737.
Google Scholar
|
[8]
|
Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 2015, 15(1), 241-252.
Google Scholar
|
[9]
|
Z. Liu and W. Wang, Favard separation method for almost periodic stochastic differential equations, J. Differential Equations, 2016, 260(11), 8109-8136.
Google Scholar
|
[10]
|
X. Meng and Y. Li, Affine-periodic solutions for discrete dynamical systems, J. Appl. Anal. Comput., 2015, 5(4), 781-792.
Google Scholar
|
[11]
|
J. J. Nieto, Periodic solutions for third order ordinary differential equations, Comment. Math. Univ. Carolin., 1991, 32(3), 495-499.
Google Scholar
|
[12]
|
E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, Journal de Mathématiques Pures et Appliquées, 1893, 9, 217-272.
Google Scholar
|
[13]
|
C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales, Adv. Difference Equ, 2015. DOI:10.1186/s13662-015-0634-0.
Google Scholar
|
[14]
|
C. Wang, X. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 2016, 46(5), 1717-1737.
Google Scholar
|
[15]
|
H. Wang, X. Yang and Y. Li, Rotating-symmetric solutions for nonlinear systems with symmetry, Acta Math. Appl. Sin. Engl. Ser., 2015, 31(2), 307-312.
Google Scholar
|
[16]
|
R. Wu, An anti-periodic LaSalle oscillation theorem, Appl. Math. Lett., 2008, 21(9), 928-933.
Google Scholar
|
[17]
|
R. Wu, The existence of T-anti-periodic solutions, Appl. Math. Lett., 2010, 23(9), 984-987.
Google Scholar
|
[18]
|
R. Wu, F. Cong and Y. Li, Anti-periodic solutions for second order differential equations, Appl. Math. Lett., 2011, 24(6), 860-863.
Google Scholar
|
[19]
|
F. Xu, Y. Li, Y. Gao and X. Xu, The well-posedness of fractional systems with affine-periodic boundary conditions, Differential Equations and Dynamical Systems, 2017. DOI:10.1007/s12591-017-0360-z.
Google Scholar
|
[20]
|
Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal, 2013. DOI:10.1155/2013/157140.
Google Scholar
|