[1]
|
H. Bahouri, A. Cohen and G. Koch, A general wavelet-based profile decomposition in critical embedding of function spaces, Confluentes Mathematici, 2011, 03(03), 1-25.
Google Scholar
|
[2]
|
H. Bahouri, J. Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 2014, 352(4), 305-310.
Google Scholar
|
[3]
|
G. Battle and P. Federbush, Divergence-free vector wavelets, Michigan Math. J., 1993, 40(1), 181-195.
Google Scholar
|
[4]
|
J. Y. Chemin, Profile decomposition and its applications to Navier-Stokes system, Morningside Lect. Math., 2016, 4, 1-53.
Google Scholar
|
[5]
|
R. Côte, C. E. Kenig and F. Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys., 2008, 284(1), 203-225.
Google Scholar
|
[6]
|
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41(7), 909-996.
Google Scholar
|
[7]
|
I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 2001, 129(2), 285-316.
Google Scholar
|
[8]
|
I. Gallagher, Some stability results on global solutions to the Navier-Stokes equations, Analysis. International Mathematical Journal of Analysis and its Applications, 2015, 35(3), 177-184.
Google Scholar
|
[9]
|
I. Gallagher, G. S. Koch and F. Planchon, A profile decomposition approach to the Lt∞ (Lx3) Navier-Stokes regularity criterion, Math. Ann., 2013, 355(4), 1527-1559.
Google Scholar
|
[10]
|
I. Gallagher, G. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 2016, 343(1), 39-82.
Google Scholar
|
[11]
|
P. Gérard, Description des défauts de compacité de l'injection de Sobolev, ESAIM, Control Optim. Calc. Var., 1998, 3, 213-233.
Google Scholar
|
[12]
|
S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 1999, 161(2), 384-396.
Google Scholar
|
[13]
|
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 2006, 166(3), 645-675.
Google Scholar
|
[14]
|
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, Acta Math., 2008, 201(2), 147-212.
Google Scholar
|
[15]
|
C. E. Kenig and F. Merle, Scattering for H1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 2010, 362(4), 1937-1962.
Google Scholar
|
[16]
|
G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University Mathematics Journal, 2010, 59(5), 1801-1830.
Google Scholar
|
[17]
|
P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, part 1, Rev. Mat. Iberoamericanax, 1985, 1(1), 145-201.
Google Scholar
|
[18]
|
Y. Meyer, Wavelets and Operators, volume 37 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D.H. Salinger.
Google Scholar
|
[19]
|
M. Riesz, Sur les ensembles compacts de fonctions sommable, Acta Sci. Math. (Szeged), 1933, 6, 136-142.
Google Scholar
|
[20]
|
M. Struwe, Variational Methods:Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer Berlin Heidelberg, 1996.
Google Scholar
|
[21]
|
B. X. Wang, Z. H. Huo, C. C. Hao and Z. H. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, World Scientific, 2011.
Google Scholar
|