2017 Volume 7 Issue 4
Article Contents

Mingjuan Chen. MINIMIZERS FOR THE EMBEDDING OF BESOV SPACES[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1637-1651. doi: 10.11948/2017100
Citation: Mingjuan Chen. MINIMIZERS FOR THE EMBEDDING OF BESOV SPACES[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1637-1651. doi: 10.11948/2017100

MINIMIZERS FOR THE EMBEDDING OF BESOV SPACES

  • Using the profile decomposition, we will show the relatively compactness of the minimizing sequence to the critical embeddings between Besov spaces, which implies the existence of minimizer of the critical embeddings of Besov spaces p1,q1s1 ↪ Ḃp2,q2s2 in d dimensions with s1 -d/p1=s2 -d/p2, s1>s2 and 1 ≤ q1 < q2 ≤ ∞. Moreover, we establish the nonexistence of the minimizer in the case Ḃp1,qs1 ↪ Ḃp2,qs2.
    MSC: 46E35;46B50
  • 加载中
  • [1] H. Bahouri, A. Cohen and G. Koch, A general wavelet-based profile decomposition in critical embedding of function spaces, Confluentes Mathematici, 2011, 03(03), 1-25.

    Google Scholar

    [2] H. Bahouri, J. Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, C. R. Math. Acad. Sci. Paris, 2014, 352(4), 305-310.

    Google Scholar

    [3] G. Battle and P. Federbush, Divergence-free vector wavelets, Michigan Math. J., 1993, 40(1), 181-195.

    Google Scholar

    [4] J. Y. Chemin, Profile decomposition and its applications to Navier-Stokes system, Morningside Lect. Math., 2016, 4, 1-53.

    Google Scholar

    [5] R. Côte, C. E. Kenig and F. Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys., 2008, 284(1), 203-225.

    Google Scholar

    [6] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41(7), 909-996.

    Google Scholar

    [7] I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 2001, 129(2), 285-316.

    Google Scholar

    [8] I. Gallagher, Some stability results on global solutions to the Navier-Stokes equations, Analysis. International Mathematical Journal of Analysis and its Applications, 2015, 35(3), 177-184.

    Google Scholar

    [9] I. Gallagher, G. S. Koch and F. Planchon, A profile decomposition approach to the Lt (Lx3) Navier-Stokes regularity criterion, Math. Ann., 2013, 355(4), 1527-1559.

    Google Scholar

    [10] I. Gallagher, G. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 2016, 343(1), 39-82.

    Google Scholar

    [11] P. Gérard, Description des défauts de compacité de l'injection de Sobolev, ESAIM, Control Optim. Calc. Var., 1998, 3, 213-233.

    Google Scholar

    [12] S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 1999, 161(2), 384-396.

    Google Scholar

    [13] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 2006, 166(3), 645-675.

    Google Scholar

    [14] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, Acta Math., 2008, 201(2), 147-212.

    Google Scholar

    [15] C. E. Kenig and F. Merle, Scattering for H1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc., 2010, 362(4), 1937-1962.

    Google Scholar

    [16] G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana University Mathematics Journal, 2010, 59(5), 1801-1830.

    Google Scholar

    [17] P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, part 1, Rev. Mat. Iberoamericanax, 1985, 1(1), 145-201.

    Google Scholar

    [18] Y. Meyer, Wavelets and Operators, volume 37 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D.H. Salinger.

    Google Scholar

    [19] M. Riesz, Sur les ensembles compacts de fonctions sommable, Acta Sci. Math. (Szeged), 1933, 6, 136-142.

    Google Scholar

    [20] M. Struwe, Variational Methods:Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer Berlin Heidelberg, 1996.

    Google Scholar

    [21] B. X. Wang, Z. H. Huo, C. C. Hao and Z. H. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, World Scientific, 2011.

    Google Scholar

Article Metrics

Article views(2122) PDF downloads(849) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint