[1]
|
L. Arnold, Stochastic differential equations:theory and applications, New York, 1974.
Google Scholar
|
[2]
|
G. Chen and T. Li, Stability of stochsatic delayed SIR model, Stoch. Dyna., 9(2009), 231-252.
Google Scholar
|
[3]
|
X. Duan, S. Yuan and Z. Qiu, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl., 68(2014), 288-308.
Google Scholar
|
[4]
|
P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4(2007), 205-219.
Google Scholar
|
[5]
|
N. Dalal, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condem use, J. Math. Anal. Appl., 325(2007), 36-53.
Google Scholar
|
[6]
|
A. Gray, D. Greenhalgh and L. Hu, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71(2011), 876-902.
Google Scholar
|
[7]
|
H. Hethcote, The mathematics of infectious diseases, SIAM Review, 42(2000), 599-653.
Google Scholar
|
[8]
|
W. Herbert, Asymptotic behavior in a deterministic epidemic model, B. Math. Biol., 35(1973), 607-614.
Google Scholar
|
[9]
|
R. Has'minskii, Stochastic stability of differential equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.
Google Scholar
|
[10]
|
D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43(2001), 525-546.
Google Scholar
|
[11]
|
B. Li, S. Yuan and W. Zhang, Analysis on an epidemic model with a ratiodependent nonlinear incidence rate, Int. J. Biomath., 4(2011), 227-239.
Google Scholar
|
[12]
|
W. Liu, S. Levin and Y. Iwasa, Influence of nonlinear incidence rate upon the behavior of SIRS epidemiological models, J. Math. Biol., 23(1986), 187-204.
Google Scholar
|
[13]
|
W. Liu, H. Hethcote and S. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25(1987), 359-380.
Google Scholar
|
[14]
|
J. Li and Z. Ma, Analysis of two SEIS epidemic models with fixed period of latency, J. Syst. Sci. Math. Sci., 26(2006), 28-236.
Google Scholar
|
[15]
|
Y. Lin, D. Jiang and T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 45(2015), 103-107.
Google Scholar
|
[16]
|
Y. Lin and D. Jiang, Threshold behavior in a stochastic SIS epidemic model with standard incidence, J. Dyn. Diff. Equat., 26(2014), 1079-1094.
Google Scholar
|
[17]
|
Y. Lin, D. Jiang and S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A, 394(2014), 187-197.
Google Scholar
|
[18]
|
P. Magal and S. Ruan, Susceptible-infectious-recovered models revisited:from the individual level to the population level, Math. Biosci., 250(2014), 26-40.
Google Scholar
|
[19]
|
X. Mao, Stochastic differential equations and their applications, Horwood publishing, Chichester, England, 1997.
Google Scholar
|
[20]
|
S. Mohammed, Stochastic functional differential equations, Boston Pitman, 1984.
Google Scholar
|
[21]
|
L. Pang, S. Ruan and S. Liu, Transmission dynamics and optimal control of measles epidemics, Appl. Math. Comput., 256(2015), 131-147.
Google Scholar
|
[22]
|
S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equat., 188(2003), 135-163.
Google Scholar
|
[23]
|
H. Tuckwell and R. Williams, Some properties of a simple stochastic epidemic model of SIR type, Math. Biosci., 208(2007), 76-97.
Google Scholar
|
[24]
|
E. Tornatore, S. Buccellato and P. Vetro, Stability of a stochastic SIR system, Physica A, 354(2005), 111-126.
Google Scholar
|
[25]
|
R. Xu, Global dynamics of an SEIRI epidemiological model with time delay, Appl. Math. Comput., 232(2014), 436-444.
Google Scholar
|
[26]
|
R. Xu, Global dynamics of an SEIS epidemic model with saturation incidence and latent period, Appl. Math. Comput., 218(2012), 7927-7938.
Google Scholar
|
[27]
|
Y. Yang, S. Ruan and D. Xiao, Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function, Math. Biosci. Eng., 12(2015), 859-877.
Google Scholar
|
[28]
|
Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243(2014), 718-727.
Google Scholar
|