2018 Volume 8 Issue 1
Article Contents

Melike Kaplan, Sait San, Ahmet Bekir. ON THE EXACT SOLUTIONS AND CONSERVATION LAWS TO THE BENJAMIN-ONO EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 1-9. doi: 10.11948/2018.1
Citation: Melike Kaplan, Sait San, Ahmet Bekir. ON THE EXACT SOLUTIONS AND CONSERVATION LAWS TO THE BENJAMIN-ONO EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 1-9. doi: 10.11948/2018.1

ON THE EXACT SOLUTIONS AND CONSERVATION LAWS TO THE BENJAMIN-ONO EQUATION

  • In the present work, we dealt with exact solutions and conservation laws of the Benjamin-Ono equation. We obtained exact solutions of given equation via the exp(-Φ(ξ)) method. The obtained solutions are included the hyperbolic functions, trigonometric functions and rational functions. By using the multiplier approach, the conservation laws of the mentioned equation was founded.
    MSC: 02.30.Jr;11.30.-j;11.10.Ef;02.70.Wz
  • 加载中
  • [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, 1990.

    Google Scholar

    [2] S. C. Anco and G. W. Bluman, Direct construction method for conservation laws of partial differential equations. Part I:Examples of conservation law classifications, Eur J Appl. Math., 2002, 13, 545-566.

    Google Scholar

    [3] K. R. Adem and C. M. Khalique, Exact solutions and conservation laws of a (2+1)-dimensional nonlinear KP-BBM equation, Abstract Appl Anal., 2013, (2013), 791863.

    Google Scholar

    [4] E. Aksoy, M. Kaplan and A. Bekir, Exponential rational function method for space-time fractional differential equations, Waves in Random and Complex Media, 2016, 26(2), 142-151.

    Google Scholar

    [5] A. Bekir and A. C. Cevikel, New exact travelling wave solutions of nonlinear physical models, Chaos, Solitons and Fractals, 2009, 41, 1733-1739.

    Google Scholar

    [6] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comput Phys Commun., 2007, 176, 148-161.

    Google Scholar

    [7] M. Eslami, M. Mirzazadeh, B. Fathi Vajargah and Anjan Biswas, Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method, Optik, 2014, 125, 3107-3116.

    Google Scholar

    [8] M. F. El-Sabbagh, R. Zait and R. M. Abdelazeem, New Exact Solutions of Some Nonlinear Partial Differential Equations Via The Improved Exp-Function Method, IJRRAS, 2014, 18(2), 132-144.

    Google Scholar

    [9] E. Fan and H. Zhang, A note on the homogeneous balance method, Physcis Letters A, 1998, 246, 403-406.

    Google Scholar

    [10] Y. Gurefe, E. Misirli, A. Sonmezoglu and M. Ekici, Extended trial equation method to generalized partial differential equations, Applied Mathematics and Computation, 2013, 219(10), 5253-5260.

    Google Scholar

    [11] R. Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in:R. Bullough, P. Caudrey (Eds.), Backlund transformations, Springer, Berlin, 1980.

    Google Scholar

    [12] N. H. Ibragimov, A new conservation theorem, J Math Anal Appl., 2007, 333, 311-328.

    Google Scholar

    [13] A. H. Khater, M. H. M. Moussa and S. F. Abdul-Aziz, Invariant variational principles and conservation laws for some nonlinear partial differential equations with constant coefficients-I, Chaos, Solitons and Fractals, 2002, 14, 1389-1401.

    Google Scholar

    [14] M. Kaplan, A. Bekir and M. N. Ozer, Solving nonlinear evolution equation system using two different methods, Open Physics, 2015, 13, 383-388.

    Google Scholar

    [15] K. Khan and M. A. Akbar, Exact and solitary wave solutions for the TzitzeicaDodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Engineering Journal, 2013, 4, 903-909.

    Google Scholar

    [16] M. Kaplan, A. Akbulut and A. Bekir, Exact travelling wave solutions of the nonlinear evolution equations by auxiliary equation method, Zeitschrift für naturforschung A, 2015, 70(11), 969-974.

    Google Scholar

    [17] H. Lai and C. Ma, The lattice Boltzmann model for the second-order BenjaminOno equations, J. Stat. Mech., 2010, P04011.

    Google Scholar

    [18] E. Misirli and Y. Gurefe, Exp-function method to solve the generalized BurgersFisher equation, Nonlinear Science Letters A:Mathematics, Physics and Mechanics, 2010, 1(3), 323-328.

    Google Scholar

    [19] M. Mirzazadeh, M. Eslami, E. Zerrad, M. F. Mahmood, A. Biswas and M. Belic, Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli's equation approach, Nonlinear Dynamics, 2015, 81(4), 1933-1949.

    Google Scholar

    [20] H. Naher, New approach of (G'/G)-expansion method and new approach of generalized (G'/G)-expansion method for ZKBBM equation, Journal of the Egyptian Mathematical Society, 2015, 23, 42-48.

    Google Scholar

    [21] E. Noether, Invariante variations probleme. Nachr Konig Gesell Wiss Gottingen Math-Phys Kl Heft, 1918, 2, 235-257 English translation in Transp Theory Stat Phys., 1971, 1(3), 186-207.

    Google Scholar

    [22] R. Naz, F. M. Mahomed and D. P. Mason, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl Math Comput., 2008, 205, 212-230.

    Google Scholar

    [23] R. Naz, Conservation laws for some compacton equations using the multiplier approach, Appl. Math. Lett., 2012, 25, 257-261.

    Google Scholar

    [24] R. Naz, Conservation laws for a complexly coupled KdV system, coupled Burgers' system and Drinfeld-Sokolov-Wilson system via multiplier approach., Commun Nonlinear Sci. Numer. Simul., 2010, 15(1), 1777-1182.

    Google Scholar

    [25] H. O. Roshid, M. R. Kabir, R. C. Bhowmik and B. K. DattaI, Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp(-Φ(ξ))-expansion method, SpringerPlus, 2014, 3, 692.

    Google Scholar

    [26] H. Steudel, Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen. Z Naturforsch, 1962, 17(A), 129-132.

    Google Scholar

    [27] N. Taghizadeh, M. Mirzazadeh and F. Farahrooz, Exact Soliton Solutions for Second-Order Benjamin-Ono Equation, Applications and Applied Mathematics, 2011, 6(1), 384-395.

    Google Scholar

    [28] F. Tascan, A. Bekir and M. Koparan, Travelling wave solutions of nonlinear evolution equations by using the first integral method, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5), 1810-1815.

    Google Scholar

    [29] A. M. Wazwaz, Multiple soliton solutions for (2+1)-dimensional SawadaKotera and Caudrey-Dodd-Gibbon equations, Math. Meth. Appl. Sci., 2011, 34, 1580-1586.

    Google Scholar

    [30] G. Wang, A. H. Kara, K. Fakhar, J. Vega-Guzmand and A. Biswas, Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation, Chaos, Solitons and Fractals, 2016, 86, 8-15.

    Google Scholar

    [31] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 2004, 40, 499-508.

    Google Scholar

    [32] E. Yusufoǧlu and A. Bekir, Exact solutions of coupled nonlinear evolution equations, Chaos, Solitons & Fractals, 2008, 37(3), 842-848.

    Google Scholar

    [33] E. M. E. Zayed and Shorog Al-Joudi, Applications of an Extended (G'/G)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics, Hindawi Publishing Corporation Mathematical Problems in Engineering, 2010, 2010, 768573.

    Google Scholar

    [34] Q. Zhou, Y. Zhong, M. Mirzazadeh, A. H. Bhrawy, E. Zerrad and A. Biswas, Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion, Waves in Random and Complex Media, 2016, 26(2), 204-210.

    Google Scholar

    [35] W. Zhen, L. De-Sheng, L. Hu-Fang and Z. Hong-Qing, A method for constructing exact solutions and application to Benjamin-Ono equation, Chinese Physics, 2005, 14(11), 2158-2163.

    Google Scholar

Article Metrics

Article views(2790) PDF downloads(1622) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint