[1]
|
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge University Press, Cambridge, 1990.
Google Scholar
|
[2]
|
S. C. Anco and G. W. Bluman, Direct construction method for conservation laws of partial differential equations. Part I:Examples of conservation law classifications, Eur J Appl. Math., 2002, 13, 545-566.
Google Scholar
|
[3]
|
K. R. Adem and C. M. Khalique, Exact solutions and conservation laws of a (2+1)-dimensional nonlinear KP-BBM equation, Abstract Appl Anal., 2013, (2013), 791863.
Google Scholar
|
[4]
|
E. Aksoy, M. Kaplan and A. Bekir, Exponential rational function method for space-time fractional differential equations, Waves in Random and Complex Media, 2016, 26(2), 142-151.
Google Scholar
|
[5]
|
A. Bekir and A. C. Cevikel, New exact travelling wave solutions of nonlinear physical models, Chaos, Solitons and Fractals, 2009, 41, 1733-1739.
Google Scholar
|
[6]
|
A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comput Phys Commun., 2007, 176, 148-161.
Google Scholar
|
[7]
|
M. Eslami, M. Mirzazadeh, B. Fathi Vajargah and Anjan Biswas, Optical solitons for the resonant nonlinear Schrödinger's equation with time-dependent coefficients by the first integral method, Optik, 2014, 125, 3107-3116.
Google Scholar
|
[8]
|
M. F. El-Sabbagh, R. Zait and R. M. Abdelazeem, New Exact Solutions of Some Nonlinear Partial Differential Equations Via The Improved Exp-Function Method, IJRRAS, 2014, 18(2), 132-144.
Google Scholar
|
[9]
|
E. Fan and H. Zhang, A note on the homogeneous balance method, Physcis Letters A, 1998, 246, 403-406.
Google Scholar
|
[10]
|
Y. Gurefe, E. Misirli, A. Sonmezoglu and M. Ekici, Extended trial equation method to generalized partial differential equations, Applied Mathematics and Computation, 2013, 219(10), 5253-5260.
Google Scholar
|
[11]
|
R. Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in:R. Bullough, P. Caudrey (Eds.), Backlund transformations, Springer, Berlin, 1980.
Google Scholar
|
[12]
|
N. H. Ibragimov, A new conservation theorem, J Math Anal Appl., 2007, 333, 311-328.
Google Scholar
|
[13]
|
A. H. Khater, M. H. M. Moussa and S. F. Abdul-Aziz, Invariant variational principles and conservation laws for some nonlinear partial differential equations with constant coefficients-I, Chaos, Solitons and Fractals, 2002, 14, 1389-1401.
Google Scholar
|
[14]
|
M. Kaplan, A. Bekir and M. N. Ozer, Solving nonlinear evolution equation system using two different methods, Open Physics, 2015, 13, 383-388.
Google Scholar
|
[15]
|
K. Khan and M. A. Akbar, Exact and solitary wave solutions for the TzitzeicaDodd-Bullough and the modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Engineering Journal, 2013, 4, 903-909.
Google Scholar
|
[16]
|
M. Kaplan, A. Akbulut and A. Bekir, Exact travelling wave solutions of the nonlinear evolution equations by auxiliary equation method, Zeitschrift für naturforschung A, 2015, 70(11), 969-974.
Google Scholar
|
[17]
|
H. Lai and C. Ma, The lattice Boltzmann model for the second-order BenjaminOno equations, J. Stat. Mech., 2010, P04011.
Google Scholar
|
[18]
|
E. Misirli and Y. Gurefe, Exp-function method to solve the generalized BurgersFisher equation, Nonlinear Science Letters A:Mathematics, Physics and Mechanics, 2010, 1(3), 323-328.
Google Scholar
|
[19]
|
M. Mirzazadeh, M. Eslami, E. Zerrad, M. F. Mahmood, A. Biswas and M. Belic, Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli's equation approach, Nonlinear Dynamics, 2015, 81(4), 1933-1949.
Google Scholar
|
[20]
|
H. Naher, New approach of (G'/G)-expansion method and new approach of generalized (G'/G)-expansion method for ZKBBM equation, Journal of the Egyptian Mathematical Society, 2015, 23, 42-48.
Google Scholar
|
[21]
|
E. Noether, Invariante variations probleme. Nachr Konig Gesell Wiss Gottingen Math-Phys Kl Heft, 1918, 2, 235-257 English translation in Transp Theory Stat Phys., 1971, 1(3), 186-207.
Google Scholar
|
[22]
|
R. Naz, F. M. Mahomed and D. P. Mason, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl Math Comput., 2008, 205, 212-230.
Google Scholar
|
[23]
|
R. Naz, Conservation laws for some compacton equations using the multiplier approach, Appl. Math. Lett., 2012, 25, 257-261.
Google Scholar
|
[24]
|
R. Naz, Conservation laws for a complexly coupled KdV system, coupled Burgers' system and Drinfeld-Sokolov-Wilson system via multiplier approach., Commun Nonlinear Sci. Numer. Simul., 2010, 15(1), 1777-1182.
Google Scholar
|
[25]
|
H. O. Roshid, M. R. Kabir, R. C. Bhowmik and B. K. DattaI, Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp(-Φ(ξ))-expansion method, SpringerPlus, 2014, 3, 692.
Google Scholar
|
[26]
|
H. Steudel, Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen. Z Naturforsch, 1962, 17(A), 129-132.
Google Scholar
|
[27]
|
N. Taghizadeh, M. Mirzazadeh and F. Farahrooz, Exact Soliton Solutions for Second-Order Benjamin-Ono Equation, Applications and Applied Mathematics, 2011, 6(1), 384-395.
Google Scholar
|
[28]
|
F. Tascan, A. Bekir and M. Koparan, Travelling wave solutions of nonlinear evolution equations by using the first integral method, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5), 1810-1815.
Google Scholar
|
[29]
|
A. M. Wazwaz, Multiple soliton solutions for (2+1)-dimensional SawadaKotera and Caudrey-Dodd-Gibbon equations, Math. Meth. Appl. Sci., 2011, 34, 1580-1586.
Google Scholar
|
[30]
|
G. Wang, A. H. Kara, K. Fakhar, J. Vega-Guzmand and A. Biswas, Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation, Chaos, Solitons and Fractals, 2016, 86, 8-15.
Google Scholar
|
[31]
|
A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer Modelling, 2004, 40, 499-508.
Google Scholar
|
[32]
|
E. Yusufoǧlu and A. Bekir, Exact solutions of coupled nonlinear evolution equations, Chaos, Solitons & Fractals, 2008, 37(3), 842-848.
Google Scholar
|
[33]
|
E. M. E. Zayed and Shorog Al-Joudi, Applications of an Extended (G'/G)-Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physics, Hindawi Publishing Corporation Mathematical Problems in Engineering, 2010, 2010, 768573.
Google Scholar
|
[34]
|
Q. Zhou, Y. Zhong, M. Mirzazadeh, A. H. Bhrawy, E. Zerrad and A. Biswas, Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion, Waves in Random and Complex Media, 2016, 26(2), 204-210.
Google Scholar
|
[35]
|
W. Zhen, L. De-Sheng, L. Hu-Fang and Z. Hong-Qing, A method for constructing exact solutions and application to Benjamin-Ono equation, Chinese Physics, 2005, 14(11), 2158-2163.
Google Scholar
|