[1]
|
A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Theory of Bifurcation of Dynamic Systems on a Plane, John Wily and Sons, New York, 1973.
Google Scholar
|
[2]
|
A. Andreev, Investigation of the behavior of the integrability curves of a system of two differential equations in the neighborhood of a singularity point, Transl. Amer. Math. Soc., 1958, 2, 183-207.
Google Scholar
|
[3]
|
V. V. Amel'kin, N. A. Lukashevich, A. P. Sadovskii, Nonlinear Oscillations in Second Order Systems, (Russian), Minsk:Belarusian State University, 1982.
Google Scholar
|
[4]
|
M. J. Álvarez and A. Gasull, Monodromy and stablility for nipotent critical points, Int. Int. J. Bifur. Chaos., 2005, 15(4), 1253-1265.
Google Scholar
|
[5]
|
M. J. Álvarez and A. Gasull, Cenerating limits cycles from a nipotent critical point via normal forms, J.Math. Anal. Appl., 2006, 318(2), 271-287.
Google Scholar
|
[6]
|
M. Han and P. Yu, Normal forms, melnikov functions and bifurcations of limit cycles, Springer, 2012.
Google Scholar
|
[7]
|
M. Han, J. Jiang and H. Zhu, Limit cycle bifurcations in near-Hamiltonian systems by perturbing a nilpotent center, Int. J. Bifur. Chaos., 2008, 18(10), 3013-3027.
Google Scholar
|
[8]
|
M. Han and V. G. Romanovski, Limit Cycle Bifurcations from a Nilpotent Focus or Center of Planar Systems, Abstract and Applied Analysis, vol. 2012, Article ID 720830, 28 pages. doi:10.1155/2012/720830.
Google Scholar
|
[9]
|
A. M. Lyapunov, Stability of Motion, Mathematics in Science and Engineering, Academic Press,NY-London, 1966.
Google Scholar
|
[10]
|
Y. Liu, Multiplicity of higher order singular point of differential autonomous system, J. Cent. South Univ. Techonol., 1999, 30(3), 622-623.
Google Scholar
|
[11]
|
Y. Liu, J. Li and W. Huang, Singular Point Values, Center Problem and Bifurcations of Limit Cycles of Two Dimensions Differential Autonomous Systems, Science Press, Beijing, 2008.
Google Scholar
|
[12]
|
Y. Liu and J. Li, New study on the center problem and bifurcations of limit cycles for The Lyapunov system (I), Int. J. Bifur. Chaos. 2009, 19(11), 3791-3801.
Google Scholar
|
[13]
|
Y. Liu and J. Li, New study on the center problem and bifurcations of limit cycles for The Lyapunov system (Ⅱ), Int. J. Bifur. Chaos. 2009, 19(9), 3087-3099.
Google Scholar
|
[14]
|
Y. Liu and J. Li, Bifurcations of limit cycles created by a multiple nilponent critical point of planar dynamical systems, Int. J. Bifur. Chaos. 2011, 21(2), 497-504.
Google Scholar
|
[15]
|
Y. Liu and J. Li, On the study of three-ordernilpotent critical points:Integral factor method, Int. J. Bifur. Chaos. 2011, 21(5), 1293-1309.
Google Scholar
|
[16]
|
P. Maesschalck and F. Dumortier, SlowCfast BogdanovCTakens bifurcations, J. Diff. Eqs., 2011, 250(2), 1000-1025.
Google Scholar
|
[17]
|
R. Moussu, Symétrie et forme normale des centres et foyers dégénérés, Ergod. Th. Dynam Sys., 1982, 2, 241-251.
Google Scholar
|
[18]
|
E. Strozyna and H. Zoladek, The analytic normal for the nilpotent singularty, J.Diff. Eqs., 2002, 179(2), 479-537.
Google Scholar
|
[19]
|
Y. Tang and W. Zhang, Bogdanov-Takens bifurcation of a polynomialdifferential system in biochemical reaction, Comp. and Math. with App., 2004, 48(5), 869-883.
Google Scholar
|
[20]
|
F. Takens, Singularities of vector fields, Inst.Hautes Études Sci. Publ.Math., 1974, 43(1), 47-100.
Google Scholar
|
[21]
|
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Bio, 2007, 208(2), 419-429.
Google Scholar
|
[22]
|
D. Xiao, Bifurcations on a five-parameter family of planar vector field, J. Dyn. and Diff. Equa, 2008, 20(4), 961-980.
Google Scholar
|
[23]
|
Z. Zhang, Qualitative Theory of Ordinary Differential Equations, Science Press, Beijing, 1985.
Google Scholar
|