[1]
|
M. Acheritogaray, P. Degond, A. Frouvelle and J. G. Liu, Kinetic formulation and global existence for the Hall-Magnetohydrodynamics system, Kinet. Relat. Models, 2011, 4(4), 901-918.
Google Scholar
|
[2]
|
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer Heidelberg Dordrecht London New York, Springer-Verlag Berlin Heidelberg, 2011.
Google Scholar
|
[3]
|
J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976.
Google Scholar
|
[4]
|
D. Barbato, F. Morandin and M. Romito, Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system, Anal. PDE, 2014, 7(8), 2009-2027.
Google Scholar
|
[5]
|
S. A. Balbus and C. Terquem, Linear analysis of the Hall effect in protostellar disks, Astrophysical Journal, 2001, 552(1), 235-247.
Google Scholar
|
[6]
|
D. F. Bian and B. Yuan, Regularity of weak solutions to the generalized NavierStokes equations (Chinese), Acta Math. Sci. Ser. A (Chin. Ed.), 2011, 31(6), 1601-1609.
Google Scholar
|
[7]
|
J. Y. Chemin, Perfect Incompressible Fluids, Clarendon press, Oxford, 1998.
Google Scholar
|
[8]
|
D. Chae, P. Degond and J. G. Liu, Well-posedness for Hallmagnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2014, 31(3), 555-565.
Google Scholar
|
[9]
|
D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-Magnetohydrodynamics, J. Differential Equations, 2014, 256(11), 3835-3858.
Google Scholar
|
[10]
|
D. Chae, R. H. Wan and J. H. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech., 2015, 17(4), 627-638.
Google Scholar
|
[11]
|
T. G. Forbes, Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn., 1991, 62(1-4), 15-36.
Google Scholar
|
[12]
|
J. S. Fan, Y. Fukumoto, G. Nakamura and Y. Zhou, Regularity criteria for the incompressible Hall-MHD system, ZAMM Z. Angew. Math. Mech., 2015, 95(11), 1156-1160.
Google Scholar
|
[13]
|
J. S. Fan, F. C. Li and G. Nakamura, Regularity criteria for the incompressible Hall-magnetohydrodynamic equations, Nonlinear Anal., 2014, 109, 173-179.
Google Scholar
|
[14]
|
M. G. Fei and Z. Y. Xiang, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation, J. Math. Phys., 2015, 56(5), 051504.
Google Scholar
|
[15]
|
L. Grafakos, Modern Fourier Analysis, Springer-Verlag, New York, 2009.
Google Scholar
|
[16]
|
F. Y. He, B. Ahmad, T. Hayat and Y. Zhou, On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal. Real World Appl., 2016, 32, 35-51.
Google Scholar
|
[17]
|
T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for EulerBoussinesq system with critical dissipation, Comm. Partial Differential Equations, 2010, 36(3), 420-445.
Google Scholar
|
[18]
|
M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A, 1960, 252(1014), 397-430.
Google Scholar
|
[19]
|
N. N. Pan and M. X. Zhu, A new regularity criterion for the 3D generalized Hall-MHD system with β ∈(1/2,1], J. Math. Anal. Appl., 2017, 445(1), 604-611.
Google Scholar
|
[20]
|
D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields, Astron. Astrophys., 1997, 321, 685-690.
Google Scholar
|
[21]
|
H. Triebel, Theory of function spaces, monographs in mathematics, Birkhäuser Verlag, Basel, 1983.
Google Scholar
|
[22]
|
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2009, 2(3), 361-366.
Google Scholar
|
[23]
|
R. H. Wan, Global regularity for generalized Hall-magnetohydrodynamics systems, Electron. J. Differential Equations, 2015, 2015(179), 1-18.
Google Scholar
|
[24]
|
J. H. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 2011, 13(2), 295-305.
Google Scholar
|
[25]
|
X. Wu, Y. H. Yu and Y. B. Tang, Global existence and asymptotic behavior for the 3D generalized Hall-MHD system, Nonlinear Anal., 2017, 151, 41-50.
Google Scholar
|
[26]
|
R. H. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations, 2015, 259(11), 5982-6008.
Google Scholar
|
[27]
|
Y. Z. Wang and W. B. Zuo, On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity, Commun. Pure Appl. Anal., 2014, 13(3), 1327-1336.
Google Scholar
|
[28]
|
R. H. Wan and Y. Zhou, Low regularity well-posedness for the 3D generalized Hall-MHD system, Acta Appl. Math., 2017, 147(1), 95-111.
Google Scholar
|
[29]
|
Z. Ye, Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics, Comput. Math. Appl., 2015, 70(8), 2137-2154.
Google Scholar
|
[30]
|
B. Q. Yuan and K. H. Liu, The blow-up criterion via horizontal component of velocity for the Hall-MHD equations, Appl. Anal., 2016, 95(11), 2578-2589.
Google Scholar
|
[31]
|
Z. Ye and Z. J. Zhang, A remark on regularity criterion for the 3D Hall-MHD equations based on the vorticity, Appl. Math. Comput., 2017, 301, 70-77.
Google Scholar
|
[32]
|
Z. Zhang, A remark on the blow up criterion for the 3D Hall-MHD system in Besov spaces, J. Math. Anal. Appl., 2016, 441(2), 692-701.
Google Scholar
|