[1]
|
Anatoly and A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438.
Google Scholar
|
[2]
|
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 2009, 228(20), 7792-7804.
Google Scholar
|
[3]
|
G. Gao, A. A. Alikhanov and Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multiterm and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 2017, 73(1), 93-121.
Google Scholar
|
[4]
|
G. Gao and Z. Sun, A compact finite difference scheme for the fractional subdiffusion equations, J. Comput. Phys., 2011, 230(3), 586-595.
Google Scholar
|
[5]
|
X. Gu, T. Huang, C. Ji, B. Carpentieri and A. A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 2017, 72(3), 957-985.
Google Scholar
|
[6]
|
L. Guo, Z. Wang and S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 2016, 93(10), 1665-1682.
Google Scholar
|
[7]
|
X. Hu and L. Zhang, A new implicit compact difference scheme for the fourthorder fractional diffusion-wave system, Int. J. Comput. Math., 2014, 91(10), 2215-2231.
Google Scholar
|
[8]
|
C. Ji, Z. Sun and Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 2016, 66(3), 1148-1174.
Google Scholar
|
[9]
|
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion:fourth order nonlinear Schrödinger-type equations, Phys. Rev. E., 1996, 53(2), 1336-1339.
Google Scholar
|
[10]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
Google Scholar
|
[11]
|
J. Li, Z. Sun and X. Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 2012, 55(4), 805-826.
Google Scholar
|
[12]
|
C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC Press, 2015.
Google Scholar
|
[13]
|
Y. Lin and C. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225(2), 1533-1552.
Google Scholar
|
[14]
|
P. Lyu and S. Vong, A linearized second-order scheme for nonlinear time fractional KleinGordon type equations, Numer. Algor., 2017, doi:10.1007/s11075-017-0385-y.
Google Scholar
|
[15]
|
K. B. Oldhan and J. Spainer, The Fractional Calculus, Academic Press, New York, 1974.
Google Scholar
|
[16]
|
I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
Google Scholar
|
[17]
|
J. Ren and Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions, J. Sci. Comput., 2013, 56(2), 381-408.
Google Scholar
|
[18]
|
I. N. Sneddon, Fourier Transforms, McGraw Hill, New York, 1951.
Google Scholar
|
[19]
|
Z. Sun and X. Wu, A fully discrete scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56(2), 193-209.
Google Scholar
|
[20]
|
S. Vong, P. Lyu, X. Chen and S. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algor., 2016, 72(1), 195-210.
Google Scholar
|
[21]
|
S. Vong, C. Shi and P. Lyu, High-order compact schemes for fractional differential equations with mixed derivatives, Numer. Methods Partial Differ. Equ., 2017, 33(6), 2141-2158.
Google Scholar
|
[22]
|
S. Vong and Z. Wang, High order difference schemes for a time fractional differential equation with Neumann boundary conditions, East Asian J. Appl. Math., 2014, 4(3), 222-241.
Google Scholar
|
[23]
|
S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech., 2014, 6(4), 419-435.
Google Scholar
|
[24]
|
Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15.
Google Scholar
|
[25]
|
S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 2005, 42(5), 1862-1874.
Google Scholar
|
[26]
|
P. Zhang and H. Pu, A second-order compact difference scheme for the fourthorder fractional sub-diffusion equation, Numer. Algor., 2017, 76(2), 573-598.
Google Scholar
|
[27]
|
P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46(2), 1079-1095.
Google Scholar
|