2018 Volume 8 Issue 4
Article Contents

Zhongsheng Yao, Zhibo Wang. A COMPACT DIFFERENCE SCHEME FOR FOURTH-ORDER FRACTIONAL SUB-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1159-1169. doi: 10.11948/2018.1159
Citation: Zhongsheng Yao, Zhibo Wang. A COMPACT DIFFERENCE SCHEME FOR FOURTH-ORDER FRACTIONAL SUB-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(4): 1159-1169. doi: 10.11948/2018.1159

A COMPACT DIFFERENCE SCHEME FOR FOURTH-ORDER FRACTIONAL SUB-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Fund Project:
  • In this paper, a compact finite difference scheme with global convergence order O(τ2 + h4) is derived for fourth-order fractional sub-diffusion equations subject to Neumann boundary conditions. The difficulty caused by the fourth-order derivative and Neumann boundary conditions is carefully handled. The stability and convergence of the proposed scheme are studied by the energy method. Theoretical results are supported by numerical experiments.
    MSC: 65M06;65M12;65M15;35R11
  • 加载中
  • [1] Anatoly and A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438.

    Google Scholar

    [2] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 2009, 228(20), 7792-7804.

    Google Scholar

    [3] G. Gao, A. A. Alikhanov and Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multiterm and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 2017, 73(1), 93-121.

    Google Scholar

    [4] G. Gao and Z. Sun, A compact finite difference scheme for the fractional subdiffusion equations, J. Comput. Phys., 2011, 230(3), 586-595.

    Google Scholar

    [5] X. Gu, T. Huang, C. Ji, B. Carpentieri and A. A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 2017, 72(3), 957-985.

    Google Scholar

    [6] L. Guo, Z. Wang and S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 2016, 93(10), 1665-1682.

    Google Scholar

    [7] X. Hu and L. Zhang, A new implicit compact difference scheme for the fourthorder fractional diffusion-wave system, Int. J. Comput. Math., 2014, 91(10), 2215-2231.

    Google Scholar

    [8] C. Ji, Z. Sun and Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 2016, 66(3), 1148-1174.

    Google Scholar

    [9] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion:fourth order nonlinear Schrödinger-type equations, Phys. Rev. E., 1996, 53(2), 1336-1339.

    Google Scholar

    [10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

    Google Scholar

    [11] J. Li, Z. Sun and X. Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 2012, 55(4), 805-826.

    Google Scholar

    [12] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC Press, 2015.

    Google Scholar

    [13] Y. Lin and C. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225(2), 1533-1552.

    Google Scholar

    [14] P. Lyu and S. Vong, A linearized second-order scheme for nonlinear time fractional KleinGordon type equations, Numer. Algor., 2017, doi:10.1007/s11075-017-0385-y.

    Google Scholar

    [15] K. B. Oldhan and J. Spainer, The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar

    [16] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

    Google Scholar

    [17] J. Ren and Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions, J. Sci. Comput., 2013, 56(2), 381-408.

    Google Scholar

    [18] I. N. Sneddon, Fourier Transforms, McGraw Hill, New York, 1951.

    Google Scholar

    [19] Z. Sun and X. Wu, A fully discrete scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56(2), 193-209.

    Google Scholar

    [20] S. Vong, P. Lyu, X. Chen and S. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algor., 2016, 72(1), 195-210.

    Google Scholar

    [21] S. Vong, C. Shi and P. Lyu, High-order compact schemes for fractional differential equations with mixed derivatives, Numer. Methods Partial Differ. Equ., 2017, 33(6), 2141-2158.

    Google Scholar

    [22] S. Vong and Z. Wang, High order difference schemes for a time fractional differential equation with Neumann boundary conditions, East Asian J. Appl. Math., 2014, 4(3), 222-241.

    Google Scholar

    [23] S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech., 2014, 6(4), 419-435.

    Google Scholar

    [24] Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15.

    Google Scholar

    [25] S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 2005, 42(5), 1862-1874.

    Google Scholar

    [26] P. Zhang and H. Pu, A second-order compact difference scheme for the fourthorder fractional sub-diffusion equation, Numer. Algor., 2017, 76(2), 573-598.

    Google Scholar

    [27] P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46(2), 1079-1095.

    Google Scholar

Article Metrics

Article views(2825) PDF downloads(809) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint