[1]
|
A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257-274.
Google Scholar
|
[2]
|
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anual. Appl., 2008, 345(1), 90-108.
Google Scholar
|
[3]
|
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391-404.
Google Scholar
|
[4]
|
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283-293.
Google Scholar
|
[5]
|
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation couple with Maxwell equations, Rev. Math. Phys., 2002, 14(4), 409-420.
Google Scholar
|
[6]
|
K-Ch. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problem, Birkhäuser Boston, 1993.
Google Scholar
|
[7]
|
G. M. Coclite, A multiplicity result for the Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(3), 417-423.
Google Scholar
|
[8]
|
G. Cerami, G. Devillanova and S. Solimini, Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differential Equations, 2005, 23(2), 139-168.
Google Scholar
|
[9]
|
G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential. Equations., 2010, 248(3), 521-543.
Google Scholar
|
[10]
|
P. d'Avenia, A. Pomponio and G. Vaira, Infinite many positive solutions for a Schrödinger-Poisson system, Nonlinear Anal., 2010, 74(16), 5705-5721.
Google Scholar
|
[11]
|
T. D'Aprile and J. C. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equations, SIAM J. Math. Anal., 2005, 37(1), 321-342.
Google Scholar
|
[12]
|
G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Advances in Differential Equations, 2002, 7(10), 1257-1280.
Google Scholar
|
[13]
|
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Berlin, 1983.
Google Scholar
|
[14]
|
I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part Ⅱ:Existence, Math. Models Methods Appl. Sci., 2009, 19(6), 877-910.
Google Scholar
|
[15]
|
I. Ianni and G. Vaira, Solutions of the Schrödinger-Poisson problem concentrating on spheres, Part I:Necessary condition, Math. Models Methods Appl. Sci., 2009, 19(5), 707-720.
Google Scholar
|
[16]
|
Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep well potential, J. Differential. Equations., 2011, 251(3), 582-608.
Google Scholar
|
[17]
|
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, parts 1 and 2, Ann. Inst. H. Poincaré,Anual. Non Linéair, 1984, 1(2), 1(4), 109-145, 223-283.
Google Scholar
|
[18]
|
G. B. Li, S. J. Peng and C. H. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Maht. phys., 2011, 52(5), 053505.
Google Scholar
|
[19]
|
G. B. Li, S. J. Peng and S. S. Yan, infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 2010, 12(6), 1069-1092.
Google Scholar
|
[20]
|
Z. L. Liu, Z. Q. Wang and J. J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Annali di Matematica Pura ed Applicata, 2016, 195(3), 775-794.
Google Scholar
|
[21]
|
D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell concentration around a sphere, Math. Models Methods Appl. Sci., 2005, 15(1), 141-164.
Google Scholar
|
[22]
|
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655-674.
Google Scholar
|
[23]
|
D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of potential, Rev. Mat. Iberoam., 2011, 27(1), 253-271.
Google Scholar
|
[24]
|
A. Salvatore, Multiple solitary waves for a non-homogeneous SchrödingerMaxwell system in R3, Adv. Nonlinear Studies, 2006, 6(2), 157-169.
Google Scholar
|
[25]
|
M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential equations and Hamiltonian Systems, Springer, Berlin, 1996.
Google Scholar
|
[26]
|
J. Wang, J. X. Xu, F. B. Zhang and X. M. Chen, Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity, 2013, 26(5), 1377-1399.
Google Scholar
|
[27]
|
Z. P. Wang and H. S. Zhou, Positive solutions for a nonlinear stationary Schrödinger-Poisson system in R3, Discrete Contin. Dyn. Syst., 2007, 18(4), 809-816.
Google Scholar
|
[28]
|
L. G. Zhao, H. Liu and F. K. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential. Equations., 2013, 255(1), 1-23.
Google Scholar
|
[29]
|
L. G. Zhao and F. K. Zhao, On the existence of solutions for the SchrödingerPoisson equations, J. Math. Anual. Appl., 2003, 346(1), 155-169.
Google Scholar
|