[1]
|
R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales:a survey, Math. Inequal. Appl., 2001, 4(4), 535-557.
Google Scholar
|
[2]
|
R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equations, Can. Appl. Math. Q., 2005, 13, 1-18.
Google Scholar
|
[3]
|
M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math., 2005, 18(3), 289-304.
Google Scholar
|
[4]
|
M. Bohner and A. Peterson, Dynamic Equations On Time Scales:An Introduction With Applications, Birkhäuser, Boston, 2001.
Google Scholar
|
[5]
|
M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 2004, 34, 1239-1254.
Google Scholar
|
[6]
|
L. Erbe and T. S. Hassan, Oscillation of Third Order Nonlinear Functional Dynamic Equations on Time Scales, Diff. Equ. Dynam. Sys., 2010, 18(1), 199-227.
Google Scholar
|
[7]
|
L. Erbe, T. S. Hassan and A. Peterson, Oscillation of third-order functional dynamic equations with mixed arguments on time scales, J. Appl. Math. Comput., 2010, 34(1-2), 353-371.
Google Scholar
|
[8]
|
Q. Feng and F. Meng, Oscillation of solutions to nonlinear forced fractional differential equations, Electron. J. Differ. Eq., 2013, 2013(169), 1-10.
Google Scholar
|
[9]
|
S. R. Grace, R. P. Agarwal, M. Bohner and D. O'Regan, Oscillation of secondorder strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul., 2009, 14, 3463-3471.
Google Scholar
|
[10]
|
S. R. Grace, J. R. Graef and M. A. El-Beltagy, On the oscillation of third order neutral delay dynamic equations on time scales, Comput. Math. Appl., 2012, 63(4), 775-782.
Google Scholar
|
[11]
|
L. Guo, L. Liu and Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal. Model., 2016, 21(5), 635-650.
Google Scholar
|
[12]
|
Y. Guan, Z. Zhao and X. Lin, On the existence of positive solutions and negative solutions of singular fractional differential equations via global bifurcation techniques, Bound. Value Probl., 2016, 2016(141), 1-18.
Google Scholar
|
[13]
|
T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling, 2009, 49, 1573-1586.
Google Scholar
|
[14]
|
T. S. Hassan, Oscillation criteria for higher order quasilinear dynamic equations with Laplacians and a deviating argument, J. Egypt. Math. Soc., 2016, 25(2), 178-185.
Google Scholar
|
[15]
|
S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56.
Google Scholar
|
[16]
|
T. S. Hassan and Q. Kong, Oscillation criteria for higher-order nonlinear dynamic equations with Laplacians and a deviating argument on time scales, Math. Methods Appl. Sci., 2017, 40(11), 4028-4039.
Google Scholar
|
[17]
|
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Second edition, Cambridge Univ. Press, Cambridge, UK, 1988.
Google Scholar
|
[18]
|
Z. Han, T. Li, S. Sun and F. Cao, Oscillation criteria for third order nonlinear delay dynamic equations on time scales, Ann. Polon. Math., 2010, 99(2), 143-156.
Google Scholar
|
[19]
|
Y. Huang and F. Meng, Oscillation criteria for forced second-order nonlinear differential equations with damping, J. Comput. Appl. Math., 2009, 224, 339-345.
Google Scholar
|
[20]
|
L. Liu and Y. Bai, New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math., 2009, 231, 657-663.
Google Scholar
|
[21]
|
H. Liu and F. Meng, Oscillation criteria for second order linear matrix differential systems with damping, J. Comput. Appl. Math., 2009, 229(1), 222-229.
Google Scholar
|
[22]
|
H. Liu and F. Meng, Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent, Adv. Diff. Equ., 2016, 2016(291), 1-14.
Google Scholar
|
[23]
|
H. Liu, F. Meng and P. Liu, Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation, Appl. Math. Comput., 2012, 219(5), 2739-2748.
Google Scholar
|
[24]
|
L. Li, F. Meng and Z. Zheng, Some new oscillation results for linear Hamiltonian systems, Appl. Math. Comput., 2009, 208(1), 219-224.
Google Scholar
|
[25]
|
J. Liu and Z. Zhao, Multiple solutions for impulsive problems with nonautonomous perturbations, Appl. Math. Lett., 2017, 64, 143-149.
Google Scholar
|
[26]
|
F. Meng and Y. Huang, Interval oscillation criteria for a forced second-order nonlinear differential equations with damping, Appl. Math. Comput., 2011, 218, 1857-1861.
Google Scholar
|
[27]
|
L. Ren and J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron. J. Differ. Eq., 2017, 2017(312), 1-22.
Google Scholar
|
[28]
|
Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. TMA, 2005, 63(5), 1073-1080.
Google Scholar
|
[29]
|
S. H. Saker, Oscillation of third-order functional dynamic equations on time scales, Science China(Mathematics), 2011, 54(12), 2597-2614.
Google Scholar
|
[30]
|
S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 2006, 187, 123-141.
Google Scholar
|
[31]
|
Y. Shi, Z. Han and Y. Sun, Oscillation criteria for a generalized Emden-Fowler dynamic equation on time scales, Adv. Diff. Equ., 2016, 2016(3), 1-12.
Google Scholar
|
[32]
|
Y. B. Sun, Z. Han, Y. Sun and Y. Pan, Oscillation theorems for certain third order nonlinear delay dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ., 2011, 75, 1-14.
Google Scholar
|
[33]
|
Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 2017, 321, 478-486.
Google Scholar
|
[34]
|
J. Shao, Z. Zheng and F. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Adv. Diff. Equ., 2013, 2013(323), 1-9.
Google Scholar
|
[35]
|
F. Xu, X. Zhang, Y. Wu and L. Liu, Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system, J. Math. Anal. Appl., 2016, 438(1), 285-310.
Google Scholar
|
[36]
|
Z. Zhao, Existence of fixed points for some convex operators and applications to multi-point boundary value problems, Appl. Math. Comput., 2009, 215(8), 2971-2977.
Google Scholar
|
[37]
|
Z. Zheng, Oscillation Criteria for Matrix Hamiltonian Systems via Summability Method, Rocky Mount. J. Math., 2009, 39(5), 1751-1766.
Google Scholar
|
[38]
|
B. Zhu, L. Liu and Y. Wu, Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equation with delay, Appl. Math. Lett., 2016, 61, 73-79.
Google Scholar
|
[39]
|
Z. Zheng and F. Meng, On Oscillation Properties for Linear Hamiltonian Systems, Rocky Mount. J. Math., 2009, 39(1), 343-358.
Google Scholar
|
[40]
|
X. Zheng, Y. Shang and X. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Methods Appl. Sci., 2017, 40(7), 2623-2633.
Google Scholar
|
[41]
|
X. Zheng, Y. Shang and X. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 2017, 37B(4), 998-1018.
Google Scholar
|
[42]
|
Z. Zheng, X. Wang and H. Han, Oscillation Criteria for Forced Second Order Differential Equations with Mixed Nonlinearities, Appl. Math. Lett., 2009, 22, 1096-1101.
Google Scholar
|