2018 Volume 8 Issue 5
Article Contents

Oktay Sh. Mukhtarov, Kadriye Aydemir. MINIMIZATION PRINCIPLE AND GENERALIZED FOURIER SERIES FOR DISCONTINUOUS STURM-LIOUVILLE SYSTEMS IN DIRECT SUM SPACES[J]. Journal of Applied Analysis & Computation, 2018, 8(5): 1511-1523. doi: 10.11948/2018.1511
Citation: Oktay Sh. Mukhtarov, Kadriye Aydemir. MINIMIZATION PRINCIPLE AND GENERALIZED FOURIER SERIES FOR DISCONTINUOUS STURM-LIOUVILLE SYSTEMS IN DIRECT SUM SPACES[J]. Journal of Applied Analysis & Computation, 2018, 8(5): 1511-1523. doi: 10.11948/2018.1511

MINIMIZATION PRINCIPLE AND GENERALIZED FOURIER SERIES FOR DISCONTINUOUS STURM-LIOUVILLE SYSTEMS IN DIRECT SUM SPACES

  • Fund Project:
  • By modifing the Green's function method we study certain spectral aspects of discontinuous Sturm-Liouville problems with interior singularities. Firstly, we define four eigen-solutions and construct the Green's function in terms of them. Based on the Green's function we establish the uniform convergeness of generalized Fourier series as eigenfunction expansion in the direct sum of Lebesgue spaces L2 where the usual inner product replaced by new inner product. Finally, we extend and generalize such important spectral properties as Parseval equation, Rayleigh quotient and Rayleigh-Ritz formula (minimization principle) for the considered problem.
    MSC: 34B24;34L10
  • 加载中
  • [1] F. V. Atkinson., On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh(A), 1984, 97, 1-7.

    Google Scholar

    [2] Y. Aygar and E. Bairamov, Properties of the two-dimensional exponential integral functions, J. Math. Chem., 2011, 49(5), 1014-1025.

    Google Scholar

    [3] B. P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent SturmLiouville problems in boundary conditions with transmission conditions, Journal of Mathematical Analysis and Applications, 2013, 401(1), 388-396.

    Google Scholar

    [4] K. Aydemir, O. Sh. Mukhtarov and H. Olğar, Differential operator equations with interface conditions in modified direct sum spaces, AIP Conference Proceeding, 2016, 1726. DOI:10.1063/1.4959642.

    Google Scholar

    [5] B. P. Allahverdiev and E. Uğurlu, Scattering and spectral problems of the direct sum Sturm-Liouville operators, Applied and Computational Mathematics, 2017, 16(3), 257-268.

    Google Scholar

    [6] J. P. Boyd, Sturm-Liouville eigenvalue problems with an interior pole, J. Math. Physics, 1981, 22(8), 1575-1590.

    Google Scholar

    [7] E. Bairamov, M. Sertbaş and Z. I. Ismailov, Self-adjoint extensions of singular third-order differential operator and applications, AIP Conference Proceedings, 2014, 1611(1), 177-182.

    Google Scholar

    [8] R. Courant and D. Hilbert, Methods Of Mathematical Physics, vol. 1, Interscience, New York, 1953.

    Google Scholar

    [9] E. A. Coddington and N. Levinson, Theory Of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar

    [10] J. R. Cannon and G. H. Meyer, On a diffusion in a fractured medium, SIAM J. Appl. Math., 1971, 20(3), 434-448.

    Google Scholar

    [11] F. Gesztesy and W. Kirsch, One-dimensional Schrdinger operators with interactions singular on a discrete set, J. Reine Angew. Math., 1985, 362, 27-50.

    Google Scholar

    [12] N. S. Imanbaev and M. A. Sadybekov, On spectral properties of a periodic problem with an integral perturbation of the boundary condition, Eurasian Mathe matical Journal, 2013, 4(3), 53-62.

    Google Scholar

    [13] M. Kandemir, Irregular boundary value problems for elliptic differentialoperator equations with discontinuous coefficients and transmission conditions, Kuwait J. Sci. Eng., 2010, 39(1A), 71-97.

    Google Scholar

    [14] M. Kandemir and O. Sh. Mukhtarov, A method on solving irregular boundary value problems with transmission conditions, Kuwait Journal of Science and Engineering, 2010, 36(2A), 79-98.

    Google Scholar

    [15] M. Kandemir, O. Sh. Mukhtarov and Y.Y. Yakubov, Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter, Mediterr. J. Math., 2009, 6(3), 317-338.

    Google Scholar

    [16] B. M. Levitan, The Eigenfunction Expansion For The Second Order Differential Operator, 1950.

    Google Scholar

    [17] O. Sh. Mukhtarov, H. Olğar and K. Aydemir, Resolvent operator and spectrum of new type boundary value problems, Filomat, 2015, 29(7), 1671-1680.

    Google Scholar

    [18] O. Sh. Mukhtarov, H. Olğar and K. Aydemir, Generalized eigenfunctions of one Sturm-Liouville system with symmetric jump conditions, AIP Conference Proceeding, 2016, 1726. DOI:10.1063/1.4945912.

    Google Scholar

    [19] H. Olğar and F. S. Muhtarov, The basis property of the system of weak eigenfunctions of a discontinuous Sturm-Liouville problem, Mediterr. J. Math., 2017, 14(3), 114.

    Google Scholar

    [20] H. Olğar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval SturmLiouville problems Together With interaction Conditions, Journal Of Mathematical Physics, 2017, 58(4),. DOI:10.1063/1.4979615.

    Google Scholar

    [21] H. Pham Huy and E. Sanchez-Palencia, Phénomènes des transmission à travers des couches minces de conductivitéélevée, J. Math. Anal. Appl., 1974, 47, 284-309.

    Google Scholar

    [22] J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Oxford University Press, 1993.

    Google Scholar

    [23] A. I. Sherstyuk, Problems of Theoretical Physics, Leningrad. Gos. Univ., Leningrad, 1988.

    Google Scholar

    [24] I. Titeux and Ya. Yakubov, Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Math. Models Methods Appl. Sc., 1997, 7(7), 1035-1050.

    Google Scholar

    [25] E. Uğurlu and B. P. Allahverdiev, On selfadjoint dilation of the dissipative extension of a direct sum differential operator, Banach Journal of Mathematical Analysis, 2013, 7(2), 194-207.

    Google Scholar

    [26] K. Yosida, Lectures on Differential and Integral Equations, Dover, New York, 1991.

    Google Scholar

    [27] A. Zettl, Adjoint and self-adjoint problems with interface conditions, SIAM J. Applied Math., 1968, 16(4), 851-859.

    Google Scholar

    [28] A. Zettl, Sturm-Liouville Theory, (Mathematical Surveys and Monographs volume 121), The American Mathematical Society, 2005.

    Google Scholar

Article Metrics

Article views(1750) PDF downloads(637) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint