[1]
|
F. V. Atkinson., On bounds for the Titchmarsh-Weyl m-coefficients and for spectral functions for second-order differential equations, Proc. Royal Soc. Edinburgh(A), 1984, 97, 1-7.
Google Scholar
|
[2]
|
Y. Aygar and E. Bairamov, Properties of the two-dimensional exponential integral functions, J. Math. Chem., 2011, 49(5), 1014-1025.
Google Scholar
|
[3]
|
B. P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent SturmLiouville problems in boundary conditions with transmission conditions, Journal of Mathematical Analysis and Applications, 2013, 401(1), 388-396.
Google Scholar
|
[4]
|
K. Aydemir, O. Sh. Mukhtarov and H. Olğar, Differential operator equations with interface conditions in modified direct sum spaces, AIP Conference Proceeding, 2016, 1726. DOI:10.1063/1.4959642.
Google Scholar
|
[5]
|
B. P. Allahverdiev and E. Uğurlu, Scattering and spectral problems of the direct sum Sturm-Liouville operators, Applied and Computational Mathematics, 2017, 16(3), 257-268.
Google Scholar
|
[6]
|
J. P. Boyd, Sturm-Liouville eigenvalue problems with an interior pole, J. Math. Physics, 1981, 22(8), 1575-1590.
Google Scholar
|
[7]
|
E. Bairamov, M. Sertbaş and Z. I. Ismailov, Self-adjoint extensions of singular third-order differential operator and applications, AIP Conference Proceedings, 2014, 1611(1), 177-182.
Google Scholar
|
[8]
|
R. Courant and D. Hilbert, Methods Of Mathematical Physics, vol. 1, Interscience, New York, 1953.
Google Scholar
|
[9]
|
E. A. Coddington and N. Levinson, Theory Of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
Google Scholar
|
[10]
|
J. R. Cannon and G. H. Meyer, On a diffusion in a fractured medium, SIAM J. Appl. Math., 1971, 20(3), 434-448.
Google Scholar
|
[11]
|
F. Gesztesy and W. Kirsch, One-dimensional Schrdinger operators with interactions singular on a discrete set, J. Reine Angew. Math., 1985, 362, 27-50.
Google Scholar
|
[12]
|
N. S. Imanbaev and M. A. Sadybekov, On spectral properties of a periodic problem with an integral perturbation of the boundary condition, Eurasian Mathe matical Journal, 2013, 4(3), 53-62.
Google Scholar
|
[13]
|
M. Kandemir, Irregular boundary value problems for elliptic differentialoperator equations with discontinuous coefficients and transmission conditions, Kuwait J. Sci. Eng., 2010, 39(1A), 71-97.
Google Scholar
|
[14]
|
M. Kandemir and O. Sh. Mukhtarov, A method on solving irregular boundary value problems with transmission conditions, Kuwait Journal of Science and Engineering, 2010, 36(2A), 79-98.
Google Scholar
|
[15]
|
M. Kandemir, O. Sh. Mukhtarov and Y.Y. Yakubov, Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter, Mediterr. J. Math., 2009, 6(3), 317-338.
Google Scholar
|
[16]
|
B. M. Levitan, The Eigenfunction Expansion For The Second Order Differential Operator, 1950.
Google Scholar
|
[17]
|
O. Sh. Mukhtarov, H. Olğar and K. Aydemir, Resolvent operator and spectrum of new type boundary value problems, Filomat, 2015, 29(7), 1671-1680.
Google Scholar
|
[18]
|
O. Sh. Mukhtarov, H. Olğar and K. Aydemir, Generalized eigenfunctions of one Sturm-Liouville system with symmetric jump conditions, AIP Conference Proceeding, 2016, 1726. DOI:10.1063/1.4945912.
Google Scholar
|
[19]
|
H. Olğar and F. S. Muhtarov, The basis property of the system of weak eigenfunctions of a discontinuous Sturm-Liouville problem, Mediterr. J. Math., 2017, 14(3), 114.
Google Scholar
|
[20]
|
H. Olğar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval SturmLiouville problems Together With interaction Conditions, Journal Of Mathematical Physics, 2017, 58(4),. DOI:10.1063/1.4979615.
Google Scholar
|
[21]
|
H. Pham Huy and E. Sanchez-Palencia, Phénomènes des transmission à travers des couches minces de conductivitéélevée, J. Math. Anal. Appl., 1974, 47, 284-309.
Google Scholar
|
[22]
|
J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Oxford University Press, 1993.
Google Scholar
|
[23]
|
A. I. Sherstyuk, Problems of Theoretical Physics, Leningrad. Gos. Univ., Leningrad, 1988.
Google Scholar
|
[24]
|
I. Titeux and Ya. Yakubov, Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Math. Models Methods Appl. Sc., 1997, 7(7), 1035-1050.
Google Scholar
|
[25]
|
E. Uğurlu and B. P. Allahverdiev, On selfadjoint dilation of the dissipative extension of a direct sum differential operator, Banach Journal of Mathematical Analysis, 2013, 7(2), 194-207.
Google Scholar
|
[26]
|
K. Yosida, Lectures on Differential and Integral Equations, Dover, New York, 1991.
Google Scholar
|
[27]
|
A. Zettl, Adjoint and self-adjoint problems with interface conditions, SIAM J. Applied Math., 1968, 16(4), 851-859.
Google Scholar
|
[28]
|
A. Zettl, Sturm-Liouville Theory, (Mathematical Surveys and Monographs volume 121), The American Mathematical Society, 2005.
Google Scholar
|