2018 Volume 8 Issue 5
Article Contents

Liqian Jia, Guanwei Chen. EXISTENCE OF PERIODIC SOLUTIONS FOR HAMILTONIAN SYSTEMS WITH SUPER-LINEAR AND SIGN-CHANGING NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2018, 8(5): 1524-1534. doi: 10.11948/2018.1524
Citation: Liqian Jia, Guanwei Chen. EXISTENCE OF PERIODIC SOLUTIONS FOR HAMILTONIAN SYSTEMS WITH SUPER-LINEAR AND SIGN-CHANGING NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2018, 8(5): 1524-1534. doi: 10.11948/2018.1524

EXISTENCE OF PERIODIC SOLUTIONS FOR HAMILTONIAN SYSTEMS WITH SUPER-LINEAR AND SIGN-CHANGING NONLINEARITIES

  • Fund Project:
  • In this paper, we consider the existence of periodic solutions for the super quadratic second order Hamiltonian system, and primitive functions of nonlinearities are allowed to be sign-changing. By using some weaker conditions, our result extends and improves some existed results in the literature.
    MSC: 34C25;37K05;58E05
  • 加载中
  • [1] F. Antonacci, Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, Nonlinear Anal., 1997, 29(12), 1353-1364.

    Google Scholar

    [2] G. Chen and S. Ma, Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0, J. Math. Anal. Appl., 2011, 379(2), 842-851.

    Google Scholar

    [3] G. Chen and S. Ma, Ground state periodic solutions of second order Hamiltonian systems without spectrum 0, Isr. J. Math., 2013, 198(1), 111-127.

    Google Scholar

    [4] I. Ekeland, Convexity Methods In Hamiltonian Mechanics, Springer Berlin, 1990.

    Google Scholar

    [5] G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Eq., 2002, 2002(08), 1-12.

    Google Scholar

    [6] H. Gu and T. An, Existence of infinitely many periodic solutions for secondorder Hamiltonian systems, Electron. J. Differ. Eq., 2013, 2013(251), 1-10.

    Google Scholar

    [7] X. M. He and X. Wu, Periodic solutions for a class of nonautonomous second order Hamiltonian systems, J. Math. Anal. Appl., 2013, 341(2), 1354-1364.

    Google Scholar

    [8] Q. Jiang and C. L. Tang, Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl., 2007, 328(1), 380-389.

    Google Scholar

    [9] Y. M. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc., 1989, 311(2), 749-780.

    Google Scholar

    [10] C. Li, R. P. Agarwal and D. Paşca, Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems, Appl. Math. Lett., 2017, 64, 113-118.

    Google Scholar

    [11] C. Li, Z. Q. Ou and D. L. Wu, On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems, Appl. Math. Lett., 2015, 43, 44-48.

    Google Scholar

    [12] L. Li and M. Schechter, Existence solutions for second order Hamiltonian systems, Nonlinear Anal-Real., 2016, 27, 283-296.

    Google Scholar

    [13] S. J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 1995, 189(1), 6-32.

    Google Scholar

    [14] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, 1989, 74(2), 339-359.

    Google Scholar

    [15] F. Meng and J. Yang, Periodic solutions for a class of non-autonomous second order systems, Int. J. Nonlin. Sci., 2010, 10(3), 342-348.

    Google Scholar

    [16] J. Pipan and M. Schechter, Non-autonomous second order Hamiltonian systems, J. Differ. Equations, 2014, 257(2), 351-373.

    Google Scholar

    [17] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31, 157-184.

    Google Scholar

    [18] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc., 1982, 272(2), 753-769.

    Google Scholar

    [19] M. Schechter, Ground state solutions for non-autonomous dynamical systems, J. Math. Phys., 2014, 55(10), 367-379.

    Google Scholar

    [20] M. Schechter, Periodic second order superlinear Hamiltonian systems, J. Math. Anal. Appl., 2015, 426(1), 546-562.

    Google Scholar

    [21] X. H. Tang and J. Jiang, Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems, Comput. Math. Appl., 2010, 59(12), 3646-3655.

    Google Scholar

    [22] Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second-order Hamiltonian systems, J. Math. Anal. Appl., 2004, 293(2), 435-445.

    Google Scholar

    [23] C. L. Tang and X. P. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 2014, 34(2), 65-71.

    Google Scholar

    [24] Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 2007, 331(1), 152-158.

    Google Scholar

    [25] Z. Wang and J. Xiao, On periodic solutions of subquadratic second order nonautonomous Hamiltonian systems, Appl. Math. Lett., 2015, 40(72), 72-77.

    Google Scholar

    [26] Z. Wang and J. Zhang, New existence results on periodic solutions of nonautonomous second order Hamiltonian systems, Appl. Math. Lett., 2018, 79, 43-50.

    Google Scholar

    [27] Z. Wang, J. Zhang and Z. Zhang, Periodic solutions of second order nonautonomous Hamiltonian systems with local superquadratic potential, Nonlinear Anal., 2009, 70(10), 3672-3681.

    Google Scholar

    [28] M. H. Yang, Y. F. Chen and Y. F. Xue, Infinitely many periodic solutions for a class of scond-order Hamiltonian systems, Acta. Math. Appl. Sin-E., 2016, 32(1), 231-238.

    Google Scholar

    [29] Q. Yin and D. Liu, Periodic solutions of a class of superquadratic second order Hamiltonian systems, Appl. Math. J. Chinese Univ. Ser. B., 2000, 15(3), 259-266.

    Google Scholar

    [30] Y. Ye and C. L. Tang, Periodic and subharmonic solutions for a class of superquadratic second order Hamiltonian systems, Nonlinear Anal., 2009, 71(5-6), 2298-2307.

    Google Scholar

    [31] Y. Ye and C. L. Tang, Periodic solutions for second order Hamiltonian systems with general superquadratic potential, B. Belg. Math. Soc-Sim., 2014, 19(1), 747-761.

    Google Scholar

    [32] F. Zhao, J. Chen and M. Yang, A periodic solution for a second-order asymptotically linear Hamiltonian system, Nonlinear Anal., 2009, 70(11), 4021-4026.

    Google Scholar

    [33] W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differ. Equations, 2002, 186(1), 141-164.

    Google Scholar

    [34] Q. Zhang and C. Liu, Infinitely many periodic solutions for second-order Hamiltonian systems, J. Differ. Equations, 2011, 251(4), 816-833.

    Google Scholar

    [35] Q. Zhang and X. H. Tang, New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl., 2010, 369(1), 357-367.

    Google Scholar

Article Metrics

Article views(1894) PDF downloads(689) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint