[1]
|
F. Antonacci, Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, Nonlinear Anal., 1997, 29(12), 1353-1364.
Google Scholar
|
[2]
|
G. Chen and S. Ma, Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0, J. Math. Anal. Appl., 2011, 379(2), 842-851.
Google Scholar
|
[3]
|
G. Chen and S. Ma, Ground state periodic solutions of second order Hamiltonian systems without spectrum 0, Isr. J. Math., 2013, 198(1), 111-127.
Google Scholar
|
[4]
|
I. Ekeland, Convexity Methods In Hamiltonian Mechanics, Springer Berlin, 1990.
Google Scholar
|
[5]
|
G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Eq., 2002, 2002(08), 1-12.
Google Scholar
|
[6]
|
H. Gu and T. An, Existence of infinitely many periodic solutions for secondorder Hamiltonian systems, Electron. J. Differ. Eq., 2013, 2013(251), 1-10.
Google Scholar
|
[7]
|
X. M. He and X. Wu, Periodic solutions for a class of nonautonomous second order Hamiltonian systems, J. Math. Anal. Appl., 2013, 341(2), 1354-1364.
Google Scholar
|
[8]
|
Q. Jiang and C. L. Tang, Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl., 2007, 328(1), 380-389.
Google Scholar
|
[9]
|
Y. M. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc., 1989, 311(2), 749-780.
Google Scholar
|
[10]
|
C. Li, R. P. Agarwal and D. Paşca, Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems, Appl. Math. Lett., 2017, 64, 113-118.
Google Scholar
|
[11]
|
C. Li, Z. Q. Ou and D. L. Wu, On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems, Appl. Math. Lett., 2015, 43, 44-48.
Google Scholar
|
[12]
|
L. Li and M. Schechter, Existence solutions for second order Hamiltonian systems, Nonlinear Anal-Real., 2016, 27, 283-296.
Google Scholar
|
[13]
|
S. J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 1995, 189(1), 6-32.
Google Scholar
|
[14]
|
J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, 1989, 74(2), 339-359.
Google Scholar
|
[15]
|
F. Meng and J. Yang, Periodic solutions for a class of non-autonomous second order systems, Int. J. Nonlin. Sci., 2010, 10(3), 342-348.
Google Scholar
|
[16]
|
J. Pipan and M. Schechter, Non-autonomous second order Hamiltonian systems, J. Differ. Equations, 2014, 257(2), 351-373.
Google Scholar
|
[17]
|
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31, 157-184.
Google Scholar
|
[18]
|
P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc., 1982, 272(2), 753-769.
Google Scholar
|
[19]
|
M. Schechter, Ground state solutions for non-autonomous dynamical systems, J. Math. Phys., 2014, 55(10), 367-379.
Google Scholar
|
[20]
|
M. Schechter, Periodic second order superlinear Hamiltonian systems, J. Math. Anal. Appl., 2015, 426(1), 546-562.
Google Scholar
|
[21]
|
X. H. Tang and J. Jiang, Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems, Comput. Math. Appl., 2010, 59(12), 3646-3655.
Google Scholar
|
[22]
|
Z. L. Tao and C. L. Tang, Periodic and subharmonic solutions of second-order Hamiltonian systems, J. Math. Anal. Appl., 2004, 293(2), 435-445.
Google Scholar
|
[23]
|
C. L. Tang and X. P. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 2014, 34(2), 65-71.
Google Scholar
|
[24]
|
Z. L. Tao, S. Yan and S. L. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 2007, 331(1), 152-158.
Google Scholar
|
[25]
|
Z. Wang and J. Xiao, On periodic solutions of subquadratic second order nonautonomous Hamiltonian systems, Appl. Math. Lett., 2015, 40(72), 72-77.
Google Scholar
|
[26]
|
Z. Wang and J. Zhang, New existence results on periodic solutions of nonautonomous second order Hamiltonian systems, Appl. Math. Lett., 2018, 79, 43-50.
Google Scholar
|
[27]
|
Z. Wang, J. Zhang and Z. Zhang, Periodic solutions of second order nonautonomous Hamiltonian systems with local superquadratic potential, Nonlinear Anal., 2009, 70(10), 3672-3681.
Google Scholar
|
[28]
|
M. H. Yang, Y. F. Chen and Y. F. Xue, Infinitely many periodic solutions for a class of scond-order Hamiltonian systems, Acta. Math. Appl. Sin-E., 2016, 32(1), 231-238.
Google Scholar
|
[29]
|
Q. Yin and D. Liu, Periodic solutions of a class of superquadratic second order Hamiltonian systems, Appl. Math. J. Chinese Univ. Ser. B., 2000, 15(3), 259-266.
Google Scholar
|
[30]
|
Y. Ye and C. L. Tang, Periodic and subharmonic solutions for a class of superquadratic second order Hamiltonian systems, Nonlinear Anal., 2009, 71(5-6), 2298-2307.
Google Scholar
|
[31]
|
Y. Ye and C. L. Tang, Periodic solutions for second order Hamiltonian systems with general superquadratic potential, B. Belg. Math. Soc-Sim., 2014, 19(1), 747-761.
Google Scholar
|
[32]
|
F. Zhao, J. Chen and M. Yang, A periodic solution for a second-order asymptotically linear Hamiltonian system, Nonlinear Anal., 2009, 70(11), 4021-4026.
Google Scholar
|
[33]
|
W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differ. Equations, 2002, 186(1), 141-164.
Google Scholar
|
[34]
|
Q. Zhang and C. Liu, Infinitely many periodic solutions for second-order Hamiltonian systems, J. Differ. Equations, 2011, 251(4), 816-833.
Google Scholar
|
[35]
|
Q. Zhang and X. H. Tang, New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl., 2010, 369(1), 357-367.
Google Scholar
|