[1]
|
I. S. Alauouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Statist., 1979, 7(1), 194-200.
Google Scholar
|
[2]
|
J. K. Baksalary, C. R. Rao, A. Markiewicz, A study of the influence of the natural restrictions on estimation problems in the singular Gauss-Markov model, J. Stat. Plann. Inference, 1992, 31(3), 335-351.
Google Scholar
|
[3]
|
P. Bhimasankaram, R. Saharay, On a partitioned linear model and some associated reduced models, Linear Algebra Appl., 1997, 264(97), 329-339.
Google Scholar
|
[4]
|
K. L. Chu, J. Isotalo, S. Puntanen, G. P. H. Styan, On decomposing the Watson efficiency of ordinary least squares in a partitioned weakly singular linear model, Sankhyā, Ser., 2004, 66(4), 634-651.
Google Scholar
|
[5]
|
H. Drygas, The Coordinate-free Approach To Gauss-Markov Estimation, Springer-Heidelberg., 1970.
Google Scholar
|
[6]
|
B. Dong, W. Guo, Y. Tian, On relations between BLUEs under two transformed linear models, J. Multivar Anal., 2014, 131(131), 279-292.
Google Scholar
|
[7]
|
J. Groß, The general Gauss-Markov model with possibly singular dispersion matrix, Stat. Pap., 2004, 45(3), 311-336.
Google Scholar
|
[8]
|
J. Groß, S. Puntanen, Estimations under a general partitioned linear model, Linear Algebra Appl., 2000, 321, 131-144.
Google Scholar
|
[9]
|
Y. Huang, B. Zheng, The additive and block decompositions about the WLSEs of parametric functions for a multiple partitioned linear regression model, J. Multivar Anal., 2015, 133, 123-135.
Google Scholar
|
[10]
|
B. Jiang, Y. Sun, On the equality of estimators under a general partitioned linear model with parameter restrictions, Stat. Pap., 2016, DOI:10.1007/s00362-016-0837-9.
Google Scholar
|
[11]
|
C. Lu, S. Gan, Y. Tian, Some remarks on general linear model with new regressors, Statist. Probab. Lett., 2015, 97(97), 16-24.
Google Scholar
|
[12]
|
X. Liu, Q. W. Wang, Equality of the BLUPs under the mixed linear model when random components and errors are correlated, J. Multivar Anal., 2013, 116(116), 297-309.
Google Scholar
|
[13]
|
G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra., 1974, 2(3), 269-292.
Google Scholar
|
[14]
|
M. Nurhonen, S. Puntanen, A property of partitioned generalized regression, Comm. Stat. Theory Methods, 1992, 21(6), 1579-1583.
Google Scholar
|
[15]
|
R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc., 1955, 51, 406-413.
Google Scholar
|
[16]
|
C. R. Rao, Unified theory of linear estimation, Sankhyā, Ser. 1971, 33(4), 371-394.
Google Scholar
|
[17]
|
C. R. Rao, Representations of best linear unbiased estimators in the GaussMarkoff model with a singular dispersion matrix, J. Multivar Anal., 1973, 3, 276-292.
Google Scholar
|
[18]
|
G. J. Song, H. X. Chang, Equalities of various estimators in the general growth curve model and the restricted growth curve model, J. Stat. Plann. Inference, 2016, 169, 88-100.
Google Scholar
|
[19]
|
G. J. Song, Q. W. Wang, On the weighted least-squares, the ordinary leastsquares and the best linear unbiased estimators under a restricted growth curve model, Stat. Pap., 2014, 55(2), 375-392.
Google Scholar
|
[20]
|
Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 2004, 152(3), 675-692.
Google Scholar
|
[21]
|
Y. Tian, Some decompositions of OLSEs and BLUEs under a partitioned linear model, Int. Stat. Rev., 2007, 75(2), 224-248.
Google Scholar
|
[22]
|
Y. Tian, On an additive decomposition of the BLUE in a multiple partitioned linear model, J. Multivar Anal., 2009, 100(4), 767-776.
Google Scholar
|
[23]
|
Y. Tian, M. Beisiegel, E. Dagebais, C. Haines, On the natural restrictions in the singular Gauss-Markov model, Stat. Pap., 2008, 49(3), 553-564.
Google Scholar
|
[24]
|
Y. Tian, Z. Takane, On additive and block decompositions of WLSEs under a multiple partitioned regression model, Statistics., 2010, 44(4), 361-379.
Google Scholar
|
[25]
|
Q. W. Wang, X. Liu, The Equalities of BLUPs for Linear Combinations Under Two General Linear Mixed Models, Comm. Stat. Theory Methods, 2013, 42(19), 3528-3543.
Google Scholar
|
[26]
|
H. J. Werner, C. Yapar, A BLUE decomposition in the general linear regression model, Linear Algebra Appl., 1996, 237/238, 395-404.
Google Scholar
|
[27]
|
H. J. Werner, C. Yapar, More on partitioned possibly restricted linear regression, Multivariate statistics and matrices in statistics. New trends in probability and statistics. Vol. 3, Proceedings of the 5th Tartu conference, Tartu, pp. 1995, 57-66.
Google Scholar
|
[28]
|
B. Zhang, B. Liu, C. Lu, A study of the equivalence of the BLUEs between a partitioned singular linear model and its reduced singular linear models, Acta Math. Sinica Ser., 2004, 20(3), 557-568.
Google Scholar
|
[29]
|
X. Zhang, Y. Tian, On decompositions of BLUEs under a partitioned linear model with restrictions, Stat. Pap., 2016, 57(2), 345-364.
Google Scholar
|