[1]
|
L. Berezansky and E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 2006, 51(1), 1-16.
Google Scholar
|
[2]
|
L. Berezansky, E. Braverman and L. Idels, The Mackey-Glass model of respiratory dynamics:Review and new results, Nonlinear Analysis, 2012, 75(16), 6034-6052.
Google Scholar
|
[3]
|
L. Berezansky, E. Braverman and L. Idels, Mackey-Glass model of hematopoiesis with non-monotone feedback:Stability, oscillation and control, Applied Mathematics and Computation, 2013, 219(11), 6268-6283.
Google Scholar
|
[4]
|
E. Braverman and S. H. Saker, Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients, Nonlinear Analysis, 2007, 67(10), 2955-2965.
Google Scholar
|
[5]
|
J. Carr, Application of Center Manifold Theorem, Springer-Verlag, New York, 1981.
Google Scholar
|
[6]
|
X. H. Ding, D. J. Fan and M. Z. Liu, Stability and bifurcation of a numerical discretization Mackey-Glass system, Chaos, Solitons and Fractals, 2007, 34(2), 383-393.
Google Scholar
|
[7]
|
K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillation and global attractivity in models of hematopoiesis, J. Dyn. Diff. Eqns., 1990, 2(2), 117-132.
Google Scholar
|
[8]
|
K. Gopalsamy, S. I. Trofimchuk and N. R. Bantsur, A note on global attractivity in models of hematopoiesis, Ukrainian Mathematical Journal, 1998, 50(1), 5-12.
Google Scholar
|
[9]
|
J. Hale and N. Sternberg, Onset of chaos in differential delay equations,J. Comput. Phys., 1988, 77(1), 221-239.
Google Scholar
|
[10]
|
I. Kubiaczyk and S. H. Saker, Oscillation and Stability in Nonlinear Delay Differential Equations of Population Dynamics, Mathematical and Computer Modelling, 2002, 35(3), 295-301.
Google Scholar
|
[11]
|
T. Krisztin and E. Liz, Bubbles for a class of delay differential equations, Qual. Theory Dyn. Syst., 2011, 10(2), 169-196.
Google Scholar
|
[12]
|
K. Kanno and A. Uchida, Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems, Phys. Rev. E, 2014, 89(3), 032918.
Google Scholar
|
[13]
|
Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, 2nd Ed., SpringerVerlag, New York, 1998.
Google Scholar
|
[14]
|
L. Li, Bifurcation and chaos in a discrete physiological control system, Applied Mathematics and Computation, 2015, 252(252), 397-404.
Google Scholar
|
[15]
|
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 1977, 197(4300), 287-289.
Google Scholar
|
[16]
|
A. Namajunas, K. Pyragas and A. Tamasevicius, Stabilization of an unstable steady state in a Mackey-Glass system, Physics Letters A, 1995, 204(3-4), 255-262.
Google Scholar
|
[17]
|
C. Qian, Global attractivity of periodic solutions in a higher order difference equation, Appl. Math. Lett., 2013, 26(5), 578-583.
Google Scholar
|
[18]
|
G. Rost, On the global attractivity controversy for a delay model of hematopoiesis, Appl. Math. Comput., 2007, 190(1), 846-850.
Google Scholar
|
[19]
|
C. Robinson, Dynamical Systems:Stability, Symbolic Dynamics, and Chaos, 2nd Ed., Boca Raton, London, New York, 1999.
Google Scholar
|
[20]
|
H. Su and X. Ding, Dynamics of a nonstandard finite-difference scheme for Mackey-Glass system, J. Math. Anal. Appl., 2008, 344(2), 932-941.
Google Scholar
|
[21]
|
H. Su, X. Ding and W. Li, Numerical bifurcation control of Mackey-Glass system, Appl. Math. Model, 2011, 35(7), 3460-3472.
Google Scholar
|
[22]
|
X. Wang and Z. Li, Globally dynamical behaviors for a class of nonlinear functional difference equation with almost periodic coefficients, Appl. Math.Comput., 2007, 190(2), 1116-1124.
Google Scholar
|
[23]
|
C. Wang and X.Y. Li, Stability and Neimark-Sacker bifurcation of a semidiscrete population model, Journal of Applied Analysis and Computation, 2014, 4(4), 419-435.
Google Scholar
|
[24]
|
C. Wang and X.Y. Li. Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., 2015, 422(2), 920-939.
Google Scholar
|
[25]
|
S. Winggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.
Google Scholar
|