2018 Volume 8 Issue 6
Article Contents

Wei Li, Xianyi Li. NEIMARK-SACKER BIFURCATION OF A SEMI-DISCRETE HEMATOPOIESIS MODEL[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1679-1693. doi: 10.11948/2018.1679
Citation: Wei Li, Xianyi Li. NEIMARK-SACKER BIFURCATION OF A SEMI-DISCRETE HEMATOPOIESIS MODEL[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1679-1693. doi: 10.11948/2018.1679

NEIMARK-SACKER BIFURCATION OF A SEMI-DISCRETE HEMATOPOIESIS MODEL

  • Fund Project:
  • In this paper, we derive a semi-discrete system for a nonlinear model of blood cell production. The local stability of its fixed points is investigated by employing a key lemma from[23,24]. It is shown that the system can undergo Neimark-Sacker bifurcation. By using the Center Manifold Theorem, bifurcation theory and normal form method, the conditions for the occurrence of Neimark-Sacker bifurcation and the stability of invariant closed curves bifurcated are also derived. The numerical simulations verify our theoretical analysis and exhibit more complex dynamics of this system.
    MSC: 39A11;37F45;37G35
  • 加载中
  • [1] L. Berezansky and E. Braverman, Mackey-Glass equation with variable coefficients, Comput. Math. Appl., 2006, 51(1), 1-16.

    Google Scholar

    [2] L. Berezansky, E. Braverman and L. Idels, The Mackey-Glass model of respiratory dynamics:Review and new results, Nonlinear Analysis, 2012, 75(16), 6034-6052.

    Google Scholar

    [3] L. Berezansky, E. Braverman and L. Idels, Mackey-Glass model of hematopoiesis with non-monotone feedback:Stability, oscillation and control, Applied Mathematics and Computation, 2013, 219(11), 6268-6283.

    Google Scholar

    [4] E. Braverman and S. H. Saker, Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients, Nonlinear Analysis, 2007, 67(10), 2955-2965.

    Google Scholar

    [5] J. Carr, Application of Center Manifold Theorem, Springer-Verlag, New York, 1981.

    Google Scholar

    [6] X. H. Ding, D. J. Fan and M. Z. Liu, Stability and bifurcation of a numerical discretization Mackey-Glass system, Chaos, Solitons and Fractals, 2007, 34(2), 383-393.

    Google Scholar

    [7] K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillation and global attractivity in models of hematopoiesis, J. Dyn. Diff. Eqns., 1990, 2(2), 117-132.

    Google Scholar

    [8] K. Gopalsamy, S. I. Trofimchuk and N. R. Bantsur, A note on global attractivity in models of hematopoiesis, Ukrainian Mathematical Journal, 1998, 50(1), 5-12.

    Google Scholar

    [9] J. Hale and N. Sternberg, Onset of chaos in differential delay equations,J. Comput. Phys., 1988, 77(1), 221-239.

    Google Scholar

    [10] I. Kubiaczyk and S. H. Saker, Oscillation and Stability in Nonlinear Delay Differential Equations of Population Dynamics, Mathematical and Computer Modelling, 2002, 35(3), 295-301.

    Google Scholar

    [11] T. Krisztin and E. Liz, Bubbles for a class of delay differential equations, Qual. Theory Dyn. Syst., 2011, 10(2), 169-196.

    Google Scholar

    [12] K. Kanno and A. Uchida, Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems, Phys. Rev. E, 2014, 89(3), 032918.

    Google Scholar

    [13] Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, 2nd Ed., SpringerVerlag, New York, 1998.

    Google Scholar

    [14] L. Li, Bifurcation and chaos in a discrete physiological control system, Applied Mathematics and Computation, 2015, 252(252), 397-404.

    Google Scholar

    [15] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 1977, 197(4300), 287-289.

    Google Scholar

    [16] A. Namajunas, K. Pyragas and A. Tamasevicius, Stabilization of an unstable steady state in a Mackey-Glass system, Physics Letters A, 1995, 204(3-4), 255-262.

    Google Scholar

    [17] C. Qian, Global attractivity of periodic solutions in a higher order difference equation, Appl. Math. Lett., 2013, 26(5), 578-583.

    Google Scholar

    [18] G. Rost, On the global attractivity controversy for a delay model of hematopoiesis, Appl. Math. Comput., 2007, 190(1), 846-850.

    Google Scholar

    [19] C. Robinson, Dynamical Systems:Stability, Symbolic Dynamics, and Chaos, 2nd Ed., Boca Raton, London, New York, 1999.

    Google Scholar

    [20] H. Su and X. Ding, Dynamics of a nonstandard finite-difference scheme for Mackey-Glass system, J. Math. Anal. Appl., 2008, 344(2), 932-941.

    Google Scholar

    [21] H. Su, X. Ding and W. Li, Numerical bifurcation control of Mackey-Glass system, Appl. Math. Model, 2011, 35(7), 3460-3472.

    Google Scholar

    [22] X. Wang and Z. Li, Globally dynamical behaviors for a class of nonlinear functional difference equation with almost periodic coefficients, Appl. Math.Comput., 2007, 190(2), 1116-1124.

    Google Scholar

    [23] C. Wang and X.Y. Li, Stability and Neimark-Sacker bifurcation of a semidiscrete population model, Journal of Applied Analysis and Computation, 2014, 4(4), 419-435.

    Google Scholar

    [24] C. Wang and X.Y. Li. Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., 2015, 422(2), 920-939.

    Google Scholar

    [25] S. Winggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.

    Google Scholar

Article Metrics

Article views(2509) PDF downloads(1042) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint