[1]
|
A. Barbagallo and P. Mauro, Inverse variational inequality approach and applications, Numerical Functional Analysis and Optimization, 2014, 35, 851-867.
Google Scholar
|
[2]
|
M. K. Camlibel, W. P. M. H. Heemels and J. M. Schumacher, Consistency of a time-stepping method for a class of pieceise linear networks, IEEE Trans. Circuit System, 2002, 49, 349-357.
Google Scholar
|
[3]
|
M. K. Camlibel, J. S. Pang and J. Shen, Lyapunov stability of complementarity and extended systems, SIAM J. Optim., 2006, 17, 1056-1101.
Google Scholar
|
[4]
|
X. J. Chen and Z. Y. Wang, Convergence of regularized time-stepping methods for differential variational inequalities, SIAM J. Optim., 2013, 23, 1647-1671.
Google Scholar
|
[5]
|
X. J. Chen and Z. Y. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 2014, 146, 379-408.
Google Scholar
|
[6]
|
T. L. Friesz, Differential variational inequalities and differential Nash games, Dyn. Optim. Differ. Games, 2010, 135, 267-312.
Google Scholar
|
[7]
|
J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program. Ser. B, 2013, 139, 205-221.
Google Scholar
|
[8]
|
L. S. Han, et al., Convergence of time-stepping schemes for passive and extended linear complementrity systems, SIAM J. Numer. Anal., 2009, 47, 3768-3796.
Google Scholar
|
[9]
|
L. S. Han and J. S. Pang, Non-zenoness of a class of differential quasivariational inequalities, Math. Program. Ser. A, 2010, 121, 171-199.
Google Scholar
|
[10]
|
B. S. He, et al., PPA-based methods for monotone inverse variational inequalities, Sciencepaper Online, 2006.
Google Scholar
|
[11]
|
B. S. He, X. Z. He and H. X. Liu, Sloving a class of constrained ‘blak-box’ inverse variational inequalities, Eur. J. Oper. Res., 2010, 204(3), 391-401.
Google Scholar
|
[12]
|
B. S. He and H. X. Liu, Inverse variational inequalities in economicsapplications and algorithms, Sciencepaper Online, 2006.
Google Scholar
|
[13]
|
X. Z. He and H. X. Liu, Inverse variational inequalities with projection-based solution methods, Eur. J. Oper. Res., 2011, 208, 12-18.
Google Scholar
|
[14]
|
R. Hu, et al., Equivalence results of well-posedness for split variationalhemivariational inequalities, J. Nonlinear Convex Anal., to appear.
Google Scholar
|
[15]
|
R. Hu and Y. P. Fang, Well-Posedness of the split inverse variational inequality problem, Bull. Malays. Math. Sci. Soc., 2015. DOI:10.1007/s40840-015-0213-2.
Google Scholar
|
[16]
|
W. Li, et al., A class of differential inverse quasi-variational inequalities in finite dimensional spaces, J. Nonlinear Sci. Appl., 2017, 10, 4532-4543.
Google Scholar
|
[17]
|
W. Li, et al., Existence and stability for a generalized differential mixed quasivariational inequality, Carpathian J. Math., 2018, 34, 347-354.
Google Scholar
|
[18]
|
W. Li, X. Wang and N. J. Huang, Differential inverse variational inequalities in finite dimensional spaces, Acta Math. Sci., 2015, 35B, 407-422.
Google Scholar
|
[19]
|
X. S. Li, N. J. Huang and D. O'Regan, Differential mixed variational inqualities in finite dimensional spaces, Nonlinear Anal., 2010, 72, 3875-3886.
Google Scholar
|
[20]
|
J. L. Lions, Quelques Mthodes de Rsolution des Problems aux Limites Non Linaires, Dunod, Gauthier-Villars, Paris, 1969.
Google Scholar
|
[21]
|
Z. H. Liu, S. D. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 2016, 260, 6787-6799.
Google Scholar
|
[22]
|
J. Lu, Y. B. Xiao and N. J. Huang, A Stackelberg quasi-equilibrium problem via quasi-variational inequalities, Carpathian J. Math., 2018, 34, 355-362.
Google Scholar
|
[23]
|
D. Melanz, P. Jayakumar and D. Negrut, Experimental validation of a differential variational inequality-based approach for handling friction and contact in vehicle/granular-terrain interaction, Journal of Terramechanics, 2016, 65, 1-13.
Google Scholar
|
[24]
|
J. S. Pang and J. Shen, Strongly regular differential variational systems, IEEE Trans. Automat. Control, 2007, 52, 242-255.
Google Scholar
|
[25]
|
J. S. Pang and D. Stewart, Differential variational inqualities, Math. Program. Ser. A, 2008,113, 345-424.
Google Scholar
|
[26]
|
A. U. Raghunathan, et al., Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Ann. Oper. Res., 2006, 148, 251-270.
Google Scholar
|
[27]
|
L. Scrimali, An inverse variational inequality approach to the evolutionary spatial price equilibrium problem, Optim. Eng., 2012, 13, 375-387.
Google Scholar
|
[28]
|
Q. Y. Shu, R. Hu and Y. B. Xiao, Metric characterizations for well-psedness of split hemivariational inequalities, J. Ineq. Appl., 2018, 190. https://doi.org/10.1186/s13660-018-1761-4.
Google Scholar
|
[29]
|
M. Sofonea and Y. B. Xiao, Fully history-dependent quasivariational inequalities in contact mechanics, Appl. Anal., 2016, 95, 2464-2484.
Google Scholar
|
[30]
|
D. E. Stewart, Uniqueness for index-one differential variational inequalities, Nonlinear Anal. Hybrid Syst., 2008, 2, 812-818.
Google Scholar
|
[31]
|
X. Wang, et al., A class of delay differential variational inequalities, J. Optim. Theory Appl., 2017, 172, 56-69.
Google Scholar
|
[32]
|
X. Wang and N. J. Huang, Differential vector variational inequalities in finitedimensional spaces, J. Optim. Theory Appl., 2013, 158, 109-129.
Google Scholar
|
[33]
|
Y. M. Wang, et al., Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 2016, 9, 1178-1192.
Google Scholar
|
[34]
|
Y. B. Xiao, N. J. Huang and M. M. Wong, Well-posedness of hemivariational inequalities and inclusion problems, Taiwanese Journal of Mathematics, 2011, 15(3), 1261-1276.
Google Scholar
|
[35]
|
Y. B. Xiao and M. Sofonea, On the optimal control of variationalhemivariational inequalities, J. Math. Anal. Appl., to appear.
Google Scholar
|
[36]
|
J. Yang, Dynamic power price problem:an inverse variational inequality approach, J. Ind. Manag. Optim., 2008, 4, 673-684.
Google Scholar
|