[1]
|
J. Argyris, M. Haase, J. C. Heinrich, Finite element approximation to twodimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng., 1991, 86, 1-26.
Google Scholar
|
[2]
|
R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation:theory and applications, Phys. Report, 1992, 222(3), 145-197.
Google Scholar
|
[3]
|
A. G. Bratsos, An explicit numerical scheme for the sine-Gordon equation in 2+1 dimensions, Appl Numer Anal Comput Math, 2005, 2(2), 189-211.
Google Scholar
|
[4]
|
A. G. Bratsos, A modified predictor-corrector scheme for the two-dimensional sine-Gordon equation, Numer Algorithms, 2006, 43, 295-308.
Google Scholar
|
[5]
|
A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 2007, 206, 251-277.
Google Scholar
|
[6]
|
A. G. Bratsos, A third order numerical scheme for the two-dimensional sineGordon equation, Math. Comput. Simulat., 2007, 76, 271-278.
Google Scholar
|
[7]
|
P. Bhatnagar, E. Gross, M. Krook,A model for collision process in gas. I:Small amplitude processed in charged and neutral one component system, Phys. Rev., 1954, 94, 511-525.
Google Scholar
|
[8]
|
S. Chen, G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 1998, 30, 329-364.
Google Scholar
|
[9]
|
P. L. Christiansen, P. S. Lomdahl, Numerical solution of 2+1 dimensional sine-Gordon solitons, Physica D, 1981, 2, 482-494.
Google Scholar
|
[10]
|
J. G. Caputo, L. Loukitch, Dynamics of point Josephson junctions in a microstrip line, Physica C:Superconductivity, 2005, 425, 69-89.
Google Scholar
|
[11]
|
T. P. Cheng, L. F. Li, Gauge Theory of Elementary Particle Physics, Claendon Press, Oxford, 2000.
Google Scholar
|
[12]
|
P. L. Christiansen, O. H. Olsen, Return effect for rotationally symmetric solitary wave solutions to the sine-Gordon equation, Phys Lett A, 1978, 68(2), 185-188.
Google Scholar
|
[13]
|
M. Cui, High order compact Alternating Direction Implicit method for the generalized sine-Gordon equation, Journal of Computational and Applied Mathematics, 2010, 235, 837-849.
Google Scholar
|
[14]
|
S. P. Dawson, S. Chen, G. D. Doolen, Lattice Boltzmann computations for reaction-diffusion equations, J. Chem. Phys., 1993, 2, 1514-1523.
Google Scholar
|
[15]
|
Y. Duan, R. Liu, Lattice Boltzmann model for two-dimensional unsteady Burgers' equation, J. Comput. Appl. Math., 2007, 206, 432-439.
Google Scholar
|
[16]
|
Y. Duan, L. Kong, R. Zhang, A lattice Boitzmann model for the generalized Burgers-Hulexly equation, Physics A, 2012, 391, 625-632.
Google Scholar
|
[17]
|
Y. Duan, X. Chen, L. Kong, Lattice Boltzmann model for the compound Burgers-Korteweg-de Vries equation, Chin. J. Comput. Phys., 2015, 32(6), 639-648.
Google Scholar
|
[18]
|
Y. Duan, L. Kong, M. Guo, Numerical simulation of a class of nonlinear wave equations by lattice Boltzmann method, Commun. Math. Stat., 2017, 5, 13-35.
Google Scholar
|
[19]
|
K. Djidjeli, W. G. Price, E. H. Twizell, Numerical solutions of a damped SineGordon equation in two space variables, J. Eng. Math., 1995, 29, 347-369.
Google Scholar
|
[20]
|
Z. Dai, D. Xian, Homoclinic breather-wave solutions for sine-Gordon equation, Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3292-3295.
Google Scholar
|
[21]
|
M. Dehghan, D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation, Comput. Methods Appl. Mech. Eng., 2008, 197, 476-486.
Google Scholar
|
[22]
|
J. A. Gonzalez, M. Martin-Landrove, Solitons in a nonlinear DNA model, Physics Letters A, 1994, 191, 409-415.
Google Scholar
|
[23]
|
B. Guo, P. J. Pascual, M. J. Rodriguez, L. Vzquez, Numerical solution of the sine-Gordon equation, Appl. Math. Comput., 1986, 18, 1-14.
Google Scholar
|
[24]
|
F. Higuera, S. Succi, R. Benzi, Lattice gas dynamics with enhanced collisions, Euro. Phys. Lett., 1989, 9, 345-349.
Google Scholar
|
[25]
|
R. Hirota, Exact three-soliton solution of the two-dimensional sine-Gordon equation, J Phys Soc Jpn, 1973, 35, 1566.
Google Scholar
|
[26]
|
J. D. Josephson, Supercurrents through barriers, Adv. Phys., 1965, 14, 419-451.
Google Scholar
|
[27]
|
S. Johnson, P. Suarez, A. Biswas, New Exact Solutions for the Sine-Gordon Equation in 2+1 Dimensions, Computational Mathematics and Mathematical Physics, 2012, 52, 98-104.
Google Scholar
|
[28]
|
P. Kaliappan, M. Lakshmanan Kadomtsev-Petviashvili, Two-dimensional sineGordon equations:reduction to Painlevé,transcendents, J Phys A:Math Gen, 1979, 12, 249-252.
Google Scholar
|
[29]
|
G. Leibbrandt, New exact solutions of the classical sine-Gordon equation in 2+1 and 3+1 dimensions, Phys. Rev. Lett., 1978, 41, 435-438.
Google Scholar
|
[30]
|
H. Lai, C. Ma, Lattice Boltzmann model for generalized nonlinear wave equation, Phys. Rev. E, 2011, 84, 046708.
Google Scholar
|
[31]
|
L. Luo, The lattice-gas and lattice Boltzmann methods:past, present and future, Proceedings of International Conference on Applied Computational Fluid Dynamics. Beijing, China, October, Beijing, 2000, 52-83.
Google Scholar
|
[32]
|
W. Liu, J. Sun, B. Wu, Space-time spectral method for the two-dimensional generalized sine-Gordon equation, J. Math.Anal.Appl., 2015, 427, 787-804.
Google Scholar
|
[33]
|
D. Mirzaei, M. Dehghan, Boundary element solution of the two-dimensional sine-Gordon equation using continuous linear elements, Engineering Analysis with Boundary Elements, 2009, 33, 12-24.
Google Scholar
|
[34]
|
Y. Qian, S. Succi, S. Orszag, Recent advances in lattice Boltzmann computing, Annu. Rev. Comput. Phys., 1995, 3, 195-242.
Google Scholar
|
[35]
|
J. Ram, P. Sapna, R. C. Mittal, Numerical simulation of two-dimensional sineGordon solitons by differential quadrature method, Computer Physics Communications, 2012, 183, 600-616.
Google Scholar
|
[36]
|
B. Shi, Z. Guo, Lattice Boltzmann model for nonlinear convection-diffusion equations, Phy. Rev. E, 2009, 79, 016701.
Google Scholar
|
[37]
|
Q. Sheng, AQM Khaliq, D. A. Voss, Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme, Math. Comput. Simulation, 2005, 68, 355-373.
Google Scholar
|
[38]
|
J. Xin, Modeling light bullets with the two-dimensional sine-Gordon equation, Physica D, 2000, 135, 345-368.
Google Scholar
|
[39]
|
G. Yan, A lattice Boltzmann equation for waves, J. Comput. Phys., 2000, 161, 61-69.
Google Scholar
|
[40]
|
J. Zhang, G. Yan, A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws, Comput. Phys. Commun., 2009, 180, 1054-1062.
Google Scholar
|
[41]
|
E. A. Zubova, N. K. Balabaev, Dynamics of soliton-like excitations in a chain of a polymer crystal:influence of neighbouring chains mobility, Journal of NonlinearMathematical Physics, 2001, 8, 305-311.
Google Scholar
|