[1]
|
G. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Appl. Math., 2010, 59, 3750-3762.
Google Scholar
|
[2]
|
J. O. Alzabut and T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl., 2014, 5(1), 177-187.
Google Scholar
|
[3]
|
F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, P. Amer. Math. Soc., 2009, 137, 981-989.
Google Scholar
|
[4]
|
F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theo., 2009, 3, 1-12.
Google Scholar
|
[5]
|
Z. Bai and R. Xu, The asymptotic behavior of solutions for a class of nonlinear fractional difference equations with damping term, Discrete. Dyn. Nat. Soc., 2018. DOI:org/10.1155/2018/5232147.
Google Scholar
|
[6]
|
D. Baleanu, G. Wu, Y. Bai and F. Chen, Stability analysis of Caputo-like discrete fractional systems, Commun. Nonlinear. Sci., 2017, 48, 520-530.
Google Scholar
|
[7]
|
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
Google Scholar
|
[8]
|
M. Bohner and A. Peterson, Dynamic Equations on time Scales:An Introduction with Applications, Birkhäuser, Boston, 2001.
Google Scholar
|
[9]
|
J.Čermák,T.Kisela and L.Nechvátal, Stability and asymptotic properties of a linear fractional difference equation, Adv. Differ. Equ., 2012. DOI:org/10.1186/1687-1847-2012-122.
Google Scholar
|
[10]
|
J.Čermák,T.Kisela and L.Nechvátal, Stability regions for linear fractional differential systems and their discretizations, Appl. Math. Comput., 2013, 219, 7012-7022.
Google Scholar
|
[11]
|
J. Čermák, I. Györi and L. Nechvátal, On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal., 2015, 18(3), 651-672.
Google Scholar
|
[12]
|
R. A. Z. Daou and X. Moreau, Fractional Calculus:Theory, Nova Science Publishers, New York, 2015.
Google Scholar
|
[13]
|
F. Du, L. Erbe, B. Jia and A. Peterson, Two asymptotic results of solutions for nabla fractional (q,h)-difference equations, Turk. J. Math., 2018. DOI:10.3906/mat-1802-49.
Google Scholar
|
[14]
|
R. A. C. Ferreira, A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc., 2012, 140, 1605-1612.
Google Scholar
|
[15]
|
R. A. C. Ferreira and D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discr. Math., 2011, 5, 110-121.
Google Scholar
|
[16]
|
C. Goodrich and A. Peterson, Discrete Fractional Calculus, Springer, New York, 2015.
Google Scholar
|
[17]
|
W. Kelley and A. Peterson, Difference Equations:An Introduction With Applications, Second Edition, Harcourt/Academic Press, New York, 2001.
Google Scholar
|
[18]
|
W. Li and W. Sheng, Sufficient conditions for oscillation of a nonlinear fractional nabla difference system, Springer Plus, 2016. DOI:org/10.1186/s40064-016-2820-2.
Google Scholar
|
[19]
|
B. Jia, L. Erbe and A. Peterson, Comparison theorems and asymptotic behavior of solutions of discrete fractional equations, Electron. J. Qual. Theo., 2015, 89, 1-18.
Google Scholar
|
[20]
|
R. Xu and Y. Zhang, Generalized Gronwall fractional summation inequalities and their applications, J. Inequal. Appl., 2015. DOI:10.1186/s13660-015-0763-8
Google Scholar
|