2018 Volume 8 Issue 6
Article Contents

Chunyan Qin, Shoufu Tian, Li Zou, Tiantian Zhang. LIE SYMMETRY ANALYSIS, CONSERVATION LAWS AND EXACT SOLUTIONS OF FOURTH-ORDER TIME FRACTIONAL BURGERS EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1727-1746. doi: 10.11948/2018.1727
Citation: Chunyan Qin, Shoufu Tian, Li Zou, Tiantian Zhang. LIE SYMMETRY ANALYSIS, CONSERVATION LAWS AND EXACT SOLUTIONS OF FOURTH-ORDER TIME FRACTIONAL BURGERS EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1727-1746. doi: 10.11948/2018.1727

LIE SYMMETRY ANALYSIS, CONSERVATION LAWS AND EXACT SOLUTIONS OF FOURTH-ORDER TIME FRACTIONAL BURGERS EQUATION

  • Fund Project:
  • In this paper, the fourth-order time fractional Burgers equation has been investigated, which can be used to describe gas dynamics and traffic flow. By employing the Lie group analysis method, the invariance properties of the equation are provided. With the aid of the sub-equation method, a new type of explicit solutions are well constructed with a detailed derivation. Furthermore, based on the power series theory, we investigate its approximate analytical solutions. Finally, its conservation laws with two kinds of independent variables are performed by making use of the nonlinear self-adjointness method.
    MSC: 35Q51;35Q53;35C99
  • 加载中
  • [1] T. M. Atanackovic, S. Konjik, S. Pilipovic and S. Simic, Variational problems with fractional derivatives:invariance conditions and Noethers theorem, Nonlinear Analysis:Theory, Methods & Applications., 2009, 71(5-6), 1504-1517.

    Google Scholar

    [2] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus:Models and Numerical Methods, World Scientific, Singapore, 2012.

    Google Scholar

    [3] A. Bekir, E. Aksoy and C. Cevikel, Exact solutions of nonlinear time fractional partial differential equations by sub-equation method, Math. Meth. Appl. Sci., 2015, 38, 2779-2784.

    Google Scholar

    [4] G.W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002.

    Google Scholar

    [5] G.W. Bluman, A. Cheviakov and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010.

    Google Scholar

    [6] L. Bourdin, J. Cresson and I. Greff, A continuous/discrete fractional Noether's theorem, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(4), 878.

    Google Scholar

    [7] Y. Chen, X.R. Hu, Lie symmetry group of the nonisospectral KadomtsevPetviashvili equation, Z. Naturforsch. A., 2009, 64(1-2), 8-14.

    Google Scholar

    [8] L. L. Chen and S.Y. Lou, Painlevé,Analysis of a (2+1)-Dimensional Burgers Equation, Commun. Theor. Phys., 1998, 29(2), 313.

    Google Scholar

    [9] L. L. Chen, S. Y. Lou, Higher dimensional integrable models with Painleve property obtained from (1+1)-dimensional Schwarz KdV equation, Z. Naturforsch. A., 1998, 53(8), 689-692.

    Google Scholar

    [10] V. D. Djordjevic and T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/KdV fractional equations, J. Comput. Appl. Math., 2008, 212, 701-714.

    Google Scholar

    [11] M. J. Dong, S. F. Tian, X. W. Yan and L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. & Math. Appl. 2018, 75(3), 957-964.

    Google Scholar

    [12] L. L. Feng, S. F. Tian, X. B. Wang and T. T. Zhang, Lie symmetry analysis, conservation laws and exact power series solutions for time-fractional FordyGibbons equation, Commun. Theor. Phys., 2016, 66(3), 321.

    Google Scholar

    [13] L. L. Feng, S. F. Tian, X. B. Wang and T. T. Zhang, Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type KadomtsevPetviashvili equation, Appl. Math. Lett., 2017, 65, 90-97.

    Google Scholar

    [14] L. L. Feng and T. T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett. 2018, 78, 133-140.

    Google Scholar

    [15] G. S. Frederico and D. F. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 2007, 334, 834.

    Google Scholar

    [16] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestn, USATU 2007, 9, 125-35.

    Google Scholar

    [17] R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear selfadjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul., 2015, 23, 153-163.

    Google Scholar

    [18] M. S. Hashemi, Group analysis and exact solutions of the time fractional Fokker-Planck equation, Phys. A., 2015, 417, 141-149.

    Google Scholar

    [19] Q. Huang and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A., 2014, 409, 110-118.

    Google Scholar

    [20] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations-Symmetries, Vol. 1. CRC Press, New York, 1994.

    Google Scholar

    [21] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333, 311-328.

    Google Scholar

    [22] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 2006, 51, 1367-1376.

    Google Scholar

    [23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [24] V. Kiryakova, Generalised Fractional Calculus and Applications, in:Pitman Res. Notes in Math. 1994.

    Google Scholar

    [25] S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 2015, 80(1-2), 791-802.

    Google Scholar

    [26] S. Y. Lou and Z. Naturforsch, Extended Painlevé,expansion, nonstandard truncation and special reductions of nonlinear evolution equations, Zeitschrift fr Naturforschung A., 1998, 53(5), 251-258.

    Google Scholar

    [27] J. B. Li and Z. J. Qiao,Explicit soliton solutions of the Kaup-Kupershmidt equation through the dynamical system approach, J. Appl. Anal. Comput., 2011, 1(2), 243-250.

    Google Scholar

    [28] P. L. Ma, S. F. Tian and T. T. Zhang, On symmetry-preserving difference scheme to a generalized Benjamin equation and third-order Burgers equation, Appl. Math. Lett., 2015, 50, 146-152.

    Google Scholar

    [29] A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett., 2012, 25(11), 1941-1946.

    Google Scholar

    [30] K. S. Miller and B. Ross, An introduction to thr fractional calculus and fractional differential equations, New York:Wiley, 1993.

    Google Scholar

    [31] E. Noether and M.A. Tavel, Transport Theory Stat, Phys., 1971, 1, 186.

    Google Scholar

    [32] T. Odzijewicz, A. B. Malinowska and D. F. Torres, Noether's theorem for fractional variational problems of variable order, Cent. Eur. J. Phys., 2013, 11(6), 691-701.

    Google Scholar

    [33] P. J. Olver, Applications of Lie Group to Differential Equations, SpringerVerlag, Heidelberg, 1986.

    Google Scholar

    [34] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.

    Google Scholar

    [35] I. Podlubny, Fractional differential eqautions, San Diego:Academic Press,1994.

    Google Scholar

    [36] C. Y. Qin, S. F. Tian, X. B. Wang, T. T. Zhang and J. Li, Rogue waves, brightdark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Comput. & Math. Appl. 2018, 75(12), 4221-4231.

    Google Scholar

    [37] C. Y. Qin, S. F. Tian, L. Zou, W. X. Ma, Solitary Wave and Quasi-Periodic Wave Solutions to a (3+1)-Dimensional Generalized Calogero-BogoyavlenskiiSchiff Equation, Adv. Appl. Math. Mech.,2018, 10(4), 948-977.

    Google Scholar

    [38] S. S. Ray, On the Soliton Solution and Jacobi Doubly Periodic Solution of the Fractional Coupled Schrödinger-KdV Equation by a Novel Approach, Int. J. Nonlinear Sci. Numer. Simul., 2015, 16(2), 79-95.

    Google Scholar

    [39] S. Sahoo and S. S. Ray, The new exact solutions of variant types of time fractional coupled schrödinger equations in plasma physics, J. Appl. Anal. Comput., 2017, 7(3), 824-840.

    Google Scholar

    [40] S. F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Diff. Equa., 2017, 262(1), 506-558.

    Google Scholar

    [41] S. F. Tian and P. L. Ma, On the quasi-periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Commun. Theor. Phys, 2014, 62(2), 245.

    Google Scholar

    [42] J. M. Tu, S. F. Tian, M. J. Xu, P. L. Ma and T. T. Zhang, On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized Btype Kadomtsev-Petviashvili equation in fluid dynamics, Comput. Math. Appl., 2016, 72(9), 2486-2504.

    Google Scholar

    [43] J. M. Tu, S. F. Tian, M. J. Xu and T. T. Zhang, On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comput., 2016, 275, 345-352.

    Google Scholar

    [44] S. F. Tian and H. Q. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation, Chaos, Solitons & Fractals., 2013, 47, 27-41.

    Google Scholar

    [45] S. F. Tian and H. Q. Zhang, On the integrability of a generalized variablecoefficient Kadomtsev-petviashvili equation, J. Phys. A:Math. Theor., 2012, 45, 055203.

    Google Scholar

    [46] S. F. Tian and H. Q. Zhang, On the integrability of a generalized variablecoefficient forced Korteweg-de Vries equation in fluids, Stud. Appl. Math., 2014, 132, 212-246.

    Google Scholar

    [47] S. F. Tian, Y. F. Zhang, B. L. Feng, H. Q. Zhang, On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution equations in shallow water, Chin. Ann. Math., 2015, 36B(4), 543-560.

    Google Scholar

    [48] S. F. Tian, T. T. Zhang, P. L. Ma and X. Y. Zhang, Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach, J. Nonlinear Math. Phys., 2015, 22(2), 180-193.

    Google Scholar

    [49] S. F. Tian, T. T. Zhang, P. L. Ma and X. Y. Zhang, Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach, J. Nonlinear Math. Phys., 2015, 22, 180-193.

    Google Scholar

    [50] S. F. Tian, Infinite propagation speed of a weakly dissipative modified twocomponent Dullin-Gottwald-Holm system, Appl. Math. Lett., 2019, 89, 1-7

    Google Scholar

    [51] S. F. Tian, Initial-boundary value problems for the coupled modified Kortewegde Vries equation on the interval, Commun. Pure & Appl. Anal. 2018, 17(3), 923-957.

    Google Scholar

    [52] S. F. Tian and T. T. Zhang, Long-time asymptotic behavior for the GerdjikovIvanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition, Proc. Amer. Math. Soc. 2018, 146(4), 1713-1729.

    Google Scholar

    [53] S. F. Tian, Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system, Appl. Math. Lett. 2018, 83, 65-72.

    Google Scholar

    [54] S. F. Tian, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method, Proc. R. Soc. Lond. A 2016, 472(2195), 20160588

    Google Scholar

    [55] V. Uchaikin and R. Sibatov, Fractional Kinetics in Solids:Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems, World Scientific, Singapore, 2013.

    Google Scholar

    [56] P. Winternitz, Lie Groups and Solutions of Nonlinear partial Differential Equations, in:Lecture Notes in Physics, Springer-Verlag, Berlin, 1993.

    Google Scholar

    [57] A. M. Wazwaz, Burgers hierarchy:multiple kink solutions and multiple singular kink solutions, J. Frankl. Inst., 2010, 347, 618-626.

    Google Scholar

    [58] A. M. Wazwaz, Combined equations of Burgers hierarchy:multiple kink solutions and multiple singular kink solutions, Phys. Scr., 2010, 82, 025001.

    Google Scholar

    [59] X. B. Wang, S. F. Tian, L. L. Feng, H. Yan and T. T. Zhang, Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation, Nonlinear Dyn., 2017, 88(3), 2265-2279.

    Google Scholar

    [60] X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL (Europhysics Letters)., 2016, 114(2), 20003.

    Google Scholar

    [61] X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Lett., 2017, 72, 58-64.

    Google Scholar

    [62] X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation, Appl. Math. Lett., 2017, 68, 40-47.

    Google Scholar

    [63] X. B. Wang, S. F. Tian, M. J. Xu and T. T. Zhang, On integrability and quasiperiodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation, Appl. Math. Comput., 2016, 283, 216-233.

    Google Scholar

    [64] X. B. Wang, S. F. Tian and T. T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 2018, 146(8), 3353-3365.

    Google Scholar

    [65] X. B. Wang, S. F. Tian, H. Yan and T. T. Zhang, On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional KadomtsevCPetviashvili equation, Comput. Math. Appl., 2017, 74(3), 556-563.

    Google Scholar

    [66] X. B. Wang, S. F. Tian, L. L. Feng, T. T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation, J. Math. Phys. 2018, 59(7), 073505.

    Google Scholar

    [67] X. B. Wang, T. T. Zhang and M. J. Dong, Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation, Appl. Math. Lett. 2018, 86, 298-304.

    Google Scholar

    [68] L. Wang, S. F. Tian, Z. T. Zhao and X. Q. Song, Lie symmetry analysis and conservation laws of a generalized time fractional foam drainage equation, Commun. Theor. Phys., 2016, 66(1), 35.

    Google Scholar

    [69] G. W. Wang and T. Z. Xu, Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis, Nonlinear Dyn., 2014, 76, 571-580.

    Google Scholar

    [70] M. J. Xu, S. F. Tian, J. M. Tu and T. T. Zhang, Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation, Nonlinear Anal.:Real World Appl., 2016, 31, 388-408.

    Google Scholar

    [71] X. W. Yan, S. F. Tian, M. J. Dong, X. B. Wang and T.T. Zhang, Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation, Z. Naturforsch. A 2018, 73(5), 399-405.

    Google Scholar

    [72] X. W. Yan, S. F. Tian, M. J. Dong, L. Zhou and T. T. Zhang, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. & Math. Appl. 2018, 76(1), 179-186.

    Google Scholar

    [73] S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDES, Phys. Lett. A., 2011, 375, 1069-1073.

    Google Scholar

Article Metrics

Article views(3126) PDF downloads(1337) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint