[1]
|
T. M. Atanackovic, S. Konjik, S. Pilipovic and S. Simic, Variational problems with fractional derivatives:invariance conditions and Noethers theorem, Nonlinear Analysis:Theory, Methods & Applications., 2009, 71(5-6), 1504-1517.
Google Scholar
|
[2]
|
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus:Models and Numerical Methods, World Scientific, Singapore, 2012.
Google Scholar
|
[3]
|
A. Bekir, E. Aksoy and C. Cevikel, Exact solutions of nonlinear time fractional partial differential equations by sub-equation method, Math. Meth. Appl. Sci., 2015, 38, 2779-2784.
Google Scholar
|
[4]
|
G.W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002.
Google Scholar
|
[5]
|
G.W. Bluman, A. Cheviakov and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York, 2010.
Google Scholar
|
[6]
|
L. Bourdin, J. Cresson and I. Greff, A continuous/discrete fractional Noether's theorem, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(4), 878.
Google Scholar
|
[7]
|
Y. Chen, X.R. Hu, Lie symmetry group of the nonisospectral KadomtsevPetviashvili equation, Z. Naturforsch. A., 2009, 64(1-2), 8-14.
Google Scholar
|
[8]
|
L. L. Chen and S.Y. Lou, Painlevé,Analysis of a (2+1)-Dimensional Burgers Equation, Commun. Theor. Phys., 1998, 29(2), 313.
Google Scholar
|
[9]
|
L. L. Chen, S. Y. Lou, Higher dimensional integrable models with Painleve property obtained from (1+1)-dimensional Schwarz KdV equation, Z. Naturforsch. A., 1998, 53(8), 689-692.
Google Scholar
|
[10]
|
V. D. Djordjevic and T. M. Atanackovic, Similarity solutions to nonlinear heat conduction and Burgers/KdV fractional equations, J. Comput. Appl. Math., 2008, 212, 701-714.
Google Scholar
|
[11]
|
M. J. Dong, S. F. Tian, X. W. Yan and L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. & Math. Appl. 2018, 75(3), 957-964.
Google Scholar
|
[12]
|
L. L. Feng, S. F. Tian, X. B. Wang and T. T. Zhang, Lie symmetry analysis, conservation laws and exact power series solutions for time-fractional FordyGibbons equation, Commun. Theor. Phys., 2016, 66(3), 321.
Google Scholar
|
[13]
|
L. L. Feng, S. F. Tian, X. B. Wang and T. T. Zhang, Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type KadomtsevPetviashvili equation, Appl. Math. Lett., 2017, 65, 90-97.
Google Scholar
|
[14]
|
L. L. Feng and T. T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett. 2018, 78, 133-140.
Google Scholar
|
[15]
|
G. S. Frederico and D. F. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 2007, 334, 834.
Google Scholar
|
[16]
|
R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestn, USATU 2007, 9, 125-35.
Google Scholar
|
[17]
|
R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear selfadjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul., 2015, 23, 153-163.
Google Scholar
|
[18]
|
M. S. Hashemi, Group analysis and exact solutions of the time fractional Fokker-Planck equation, Phys. A., 2015, 417, 141-149.
Google Scholar
|
[19]
|
Q. Huang and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Phys. A., 2014, 409, 110-118.
Google Scholar
|
[20]
|
N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations-Symmetries, Vol. 1. CRC Press, New York, 1994.
Google Scholar
|
[21]
|
N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333, 311-328.
Google Scholar
|
[22]
|
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 2006, 51, 1367-1376.
Google Scholar
|
[23]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
Google Scholar
|
[24]
|
V. Kiryakova, Generalised Fractional Calculus and Applications, in:Pitman Res. Notes in Math. 1994.
Google Scholar
|
[25]
|
S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 2015, 80(1-2), 791-802.
Google Scholar
|
[26]
|
S. Y. Lou and Z. Naturforsch, Extended Painlevé,expansion, nonstandard truncation and special reductions of nonlinear evolution equations, Zeitschrift fr Naturforschung A., 1998, 53(5), 251-258.
Google Scholar
|
[27]
|
J. B. Li and Z. J. Qiao,Explicit soliton solutions of the Kaup-Kupershmidt equation through the dynamical system approach, J. Appl. Anal. Comput., 2011, 1(2), 243-250.
Google Scholar
|
[28]
|
P. L. Ma, S. F. Tian and T. T. Zhang, On symmetry-preserving difference scheme to a generalized Benjamin equation and third-order Burgers equation, Appl. Math. Lett., 2015, 50, 146-152.
Google Scholar
|
[29]
|
A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett., 2012, 25(11), 1941-1946.
Google Scholar
|
[30]
|
K. S. Miller and B. Ross, An introduction to thr fractional calculus and fractional differential equations, New York:Wiley, 1993.
Google Scholar
|
[31]
|
E. Noether and M.A. Tavel, Transport Theory Stat, Phys., 1971, 1, 186.
Google Scholar
|
[32]
|
T. Odzijewicz, A. B. Malinowska and D. F. Torres, Noether's theorem for fractional variational problems of variable order, Cent. Eur. J. Phys., 2013, 11(6), 691-701.
Google Scholar
|
[33]
|
P. J. Olver, Applications of Lie Group to Differential Equations, SpringerVerlag, Heidelberg, 1986.
Google Scholar
|
[34]
|
L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
Google Scholar
|
[35]
|
I. Podlubny, Fractional differential eqautions, San Diego:Academic Press,1994.
Google Scholar
|
[36]
|
C. Y. Qin, S. F. Tian, X. B. Wang, T. T. Zhang and J. Li, Rogue waves, brightdark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Comput. & Math. Appl. 2018, 75(12), 4221-4231.
Google Scholar
|
[37]
|
C. Y. Qin, S. F. Tian, L. Zou, W. X. Ma, Solitary Wave and Quasi-Periodic Wave Solutions to a (3+1)-Dimensional Generalized Calogero-BogoyavlenskiiSchiff Equation, Adv. Appl. Math. Mech.,2018, 10(4), 948-977.
Google Scholar
|
[38]
|
S. S. Ray, On the Soliton Solution and Jacobi Doubly Periodic Solution of the Fractional Coupled Schrödinger-KdV Equation by a Novel Approach, Int. J. Nonlinear Sci. Numer. Simul., 2015, 16(2), 79-95.
Google Scholar
|
[39]
|
S. Sahoo and S. S. Ray, The new exact solutions of variant types of time fractional coupled schrödinger equations in plasma physics, J. Appl. Anal. Comput., 2017, 7(3), 824-840.
Google Scholar
|
[40]
|
S. F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Diff. Equa., 2017, 262(1), 506-558.
Google Scholar
|
[41]
|
S. F. Tian and P. L. Ma, On the quasi-periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Commun. Theor. Phys, 2014, 62(2), 245.
Google Scholar
|
[42]
|
J. M. Tu, S. F. Tian, M. J. Xu, P. L. Ma and T. T. Zhang, On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized Btype Kadomtsev-Petviashvili equation in fluid dynamics, Comput. Math. Appl., 2016, 72(9), 2486-2504.
Google Scholar
|
[43]
|
J. M. Tu, S. F. Tian, M. J. Xu and T. T. Zhang, On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comput., 2016, 275, 345-352.
Google Scholar
|
[44]
|
S. F. Tian and H. Q. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation, Chaos, Solitons & Fractals., 2013, 47, 27-41.
Google Scholar
|
[45]
|
S. F. Tian and H. Q. Zhang, On the integrability of a generalized variablecoefficient Kadomtsev-petviashvili equation, J. Phys. A:Math. Theor., 2012, 45, 055203.
Google Scholar
|
[46]
|
S. F. Tian and H. Q. Zhang, On the integrability of a generalized variablecoefficient forced Korteweg-de Vries equation in fluids, Stud. Appl. Math., 2014, 132, 212-246.
Google Scholar
|
[47]
|
S. F. Tian, Y. F. Zhang, B. L. Feng, H. Q. Zhang, On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution equations in shallow water, Chin. Ann. Math., 2015, 36B(4), 543-560.
Google Scholar
|
[48]
|
S. F. Tian, T. T. Zhang, P. L. Ma and X. Y. Zhang, Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach, J. Nonlinear Math. Phys., 2015, 22(2), 180-193.
Google Scholar
|
[49]
|
S. F. Tian, T. T. Zhang, P. L. Ma and X. Y. Zhang, Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach, J. Nonlinear Math. Phys., 2015, 22, 180-193.
Google Scholar
|
[50]
|
S. F. Tian, Infinite propagation speed of a weakly dissipative modified twocomponent Dullin-Gottwald-Holm system, Appl. Math. Lett., 2019, 89, 1-7
Google Scholar
|
[51]
|
S. F. Tian, Initial-boundary value problems for the coupled modified Kortewegde Vries equation on the interval, Commun. Pure & Appl. Anal. 2018, 17(3), 923-957.
Google Scholar
|
[52]
|
S. F. Tian and T. T. Zhang, Long-time asymptotic behavior for the GerdjikovIvanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition, Proc. Amer. Math. Soc. 2018, 146(4), 1713-1729.
Google Scholar
|
[53]
|
S. F. Tian, Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system, Appl. Math. Lett. 2018, 83, 65-72.
Google Scholar
|
[54]
|
S. F. Tian, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method, Proc. R. Soc. Lond. A 2016, 472(2195), 20160588
Google Scholar
|
[55]
|
V. Uchaikin and R. Sibatov, Fractional Kinetics in Solids:Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems, World Scientific, Singapore, 2013.
Google Scholar
|
[56]
|
P. Winternitz, Lie Groups and Solutions of Nonlinear partial Differential Equations, in:Lecture Notes in Physics, Springer-Verlag, Berlin, 1993.
Google Scholar
|
[57]
|
A. M. Wazwaz, Burgers hierarchy:multiple kink solutions and multiple singular kink solutions, J. Frankl. Inst., 2010, 347, 618-626.
Google Scholar
|
[58]
|
A. M. Wazwaz, Combined equations of Burgers hierarchy:multiple kink solutions and multiple singular kink solutions, Phys. Scr., 2010, 82, 025001.
Google Scholar
|
[59]
|
X. B. Wang, S. F. Tian, L. L. Feng, H. Yan and T. T. Zhang, Quasiperiodic waves, solitary waves and asymptotic properties for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation, Nonlinear Dyn., 2017, 88(3), 2265-2279.
Google Scholar
|
[60]
|
X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, EPL (Europhysics Letters)., 2016, 114(2), 20003.
Google Scholar
|
[61]
|
X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Lett., 2017, 72, 58-64.
Google Scholar
|
[62]
|
X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation, Appl. Math. Lett., 2017, 68, 40-47.
Google Scholar
|
[63]
|
X. B. Wang, S. F. Tian, M. J. Xu and T. T. Zhang, On integrability and quasiperiodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation, Appl. Math. Comput., 2016, 283, 216-233.
Google Scholar
|
[64]
|
X. B. Wang, S. F. Tian and T. T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 2018, 146(8), 3353-3365.
Google Scholar
|
[65]
|
X. B. Wang, S. F. Tian, H. Yan and T. T. Zhang, On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional KadomtsevCPetviashvili equation, Comput. Math. Appl., 2017, 74(3), 556-563.
Google Scholar
|
[66]
|
X. B. Wang, S. F. Tian, L. L. Feng, T. T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation, J. Math. Phys. 2018, 59(7), 073505.
Google Scholar
|
[67]
|
X. B. Wang, T. T. Zhang and M. J. Dong, Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation, Appl. Math. Lett. 2018, 86, 298-304.
Google Scholar
|
[68]
|
L. Wang, S. F. Tian, Z. T. Zhao and X. Q. Song, Lie symmetry analysis and conservation laws of a generalized time fractional foam drainage equation, Commun. Theor. Phys., 2016, 66(1), 35.
Google Scholar
|
[69]
|
G. W. Wang and T. Z. Xu, Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis, Nonlinear Dyn., 2014, 76, 571-580.
Google Scholar
|
[70]
|
M. J. Xu, S. F. Tian, J. M. Tu and T. T. Zhang, Bäcklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation, Nonlinear Anal.:Real World Appl., 2016, 31, 388-408.
Google Scholar
|
[71]
|
X. W. Yan, S. F. Tian, M. J. Dong, X. B. Wang and T.T. Zhang, Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation, Z. Naturforsch. A 2018, 73(5), 399-405.
Google Scholar
|
[72]
|
X. W. Yan, S. F. Tian, M. J. Dong, L. Zhou and T. T. Zhang, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. & Math. Appl. 2018, 76(1), 179-186.
Google Scholar
|
[73]
|
S. Zhang and H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDES, Phys. Lett. A., 2011, 375, 1069-1073.
Google Scholar
|