[1]
|
J. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
Google Scholar
|
[2]
|
S. Bishop, On continuous section sets of non-Lipschitzian quantum stochastic evolution inclusions, Int. J. Stoch. Anal., 2015, 2015, Art. ID 834194, 5 pp.
Google Scholar
|
[3]
|
B. C. Dhage, Multi-valued operators and fixed point theorems in Banach algebras I, Taiwan. J. Math., 2006, 10(4), 1025-1045.
Google Scholar
|
[4]
|
B. C. Dhage, Multi-valued operators and fixed point theorems Ⅱ, Tamkang J. Math., 2006, 37(1), 27-46.
Google Scholar
|
[5]
|
B. C. Dhage, Multi-valued operators and fixed points I, Nonlinear Funct. Anal. Appl., 2006, 10, 71-84.
Google Scholar
|
[6]
|
R. Espínola and A. Nicolae, Continuous sections of Lipschitz extensions in metric spaces, Rev. Mat. Complut., 2015, 28, 741-759.
Google Scholar
|
[7]
|
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, vol. I:Theory, Kluwer Academic Publishers, Dordrecht, 1997.
Google Scholar
|
[8]
|
P. Q. Khanh and V. S. T. Long, Fixed points, continuous selections and existence of solution of optimization-related problems, Numer. Funct. Anal. Optim., 2018, 39, 100-125.
Google Scholar
|
[9]
|
M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Macmillan Co., New York, 1964.
Google Scholar
|
[10]
|
A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 1965, 13, 781-786.
Google Scholar
|
[11]
|
T. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Am. Math. Soc., 1974, 80, 1123-1126.
Google Scholar
|
[12]
|
H. Lu, Applications of a continuous section theorem in topological spaces without linear and convex structure, Nanjing Daxue Xuebao Shuxue Bannian Kan, 2013, 30(2), 135-152.
Google Scholar
|
[13]
|
E. Michael, Continuous selections I, Ann. Math., 1956, 63, 361-382.
Google Scholar
|
[14]
|
D. O'Regan, New fixed pointresults for 1-set contractive set-valued maps, Comput. Math. Appl., 1988, 35, 27-34.
Google Scholar
|
[15]
|
G. Poonguzali, M. Marudai, G. A. Anastassiou and C. Park, Existence of continuous selection for some special kind of multivalued mappings, J. Comput. Anal. Appl., 2019, 27(3), 447-452.
Google Scholar
|
[16]
|
L. Rybinski, An application of the continuous selection theorem to the study of the fixed points of multivalued mappings, J. Math. Anal. Appl., 1990, 153, 391-396.
Google Scholar
|
[17]
|
S. Sokantika and A. Thamrongthanyalak, Definable continuous sections of setvalued maps in o-minimal expansions of the real field, Bull. Pol. Acad. Sci. Math., 2017, 65(2), 97-105.
Google Scholar
|
[18]
|
I. G. Tsar'kov, Continuous sections in nonsymmetrical spaces, Mat. Sb., 2018, 209(4), 95-116.
Google Scholar
|
[19]
|
K. T. Wen and H. R. Li, A new continuous section theorem in FC-spaces with applications to generalized fuzzy constrained multiobjective games, Acta Anal. Funct. Appl., 2014, 16(4), 356-359.
Google Scholar
|
[20]
|
E. Zeidler, Nonlinear Functional Analysis and its Applications:Part I, Springer-Verlag, New York, 1985.
Google Scholar
|