2018 Volume 8 Issue 6
Article Contents

Brigita Ferčec, Jaume Giné. A BLOW-UP METHOD TO PROVE FORMAL INTEGRABILITY FOR SOME PLANAR DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1833-1850. doi: 10.11948/2018.1833
Citation: Brigita Ferčec, Jaume Giné. A BLOW-UP METHOD TO PROVE FORMAL INTEGRABILITY FOR SOME PLANAR DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1833-1850. doi: 10.11948/2018.1833

A BLOW-UP METHOD TO PROVE FORMAL INTEGRABILITY FOR SOME PLANAR DIFFERENTIAL SYSTEMS

  • Fund Project:
  • In this work we provide an effective method to prove the formal integrability of the resonant saddles. The method is based on the use of a blow-up and the resolution of a recurrence differential equation using induction. Using the method some open integrability problems for certain resonant saddles are solved.
    MSC: 34C05;37G05;34C20
  • 加载中
  • [1] A. Algaba, E. Gamero, C. García, The integrability problem for a class of planar systems, Nonlinearity, 2009, 22(2), 395-420.

    Google Scholar

    [2] A. Algaba, C. García, J. Giné, On the formal integrability problem for planar differential systems, Abstr. Appl. Anal., 2013, Article ID 482305, 10 pages.

    Google Scholar

    [3] A. Algaba, C. García, M. Reyes, A note on analytic integrability of planar vector fields, European J. Appl. Math., 2012, 23(5), 555-562.

    Google Scholar

    [4] Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, 702, New York:Springer-Verlag, 1979.

    Google Scholar

    [5] J. Chavarriga, H. Giacomini, J. Giné, J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 1999, 157(1), 163-182.

    Google Scholar

    [6] X. Chen, J. Giné, V. G. Romanovski, D. S. Shafer, The 1:-q resonant center problem for certain cubic Lotka-Volterra systems, Appl. Math. Comput., 2012, 218(23), 11620-11633.

    Google Scholar

    [7] C. Christopher, P. Mardešic, C. Rousseau, Normalizable, integrable and linearizable saddle points for complex quadratic systems in C2, J. Dyn. Control Syst., 2003, 9, 311-363.

    Google Scholar

    [8] M. Dukaric, J. Giné, Integrability of Lotka-Volterra planar complex cubic systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2016, 26(1), 1650002, 16 pp.

    Google Scholar

    [9] H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un cente, Bull. Sci. Math. Sér.(2), 1908, 32, 230-252.

    Google Scholar

    [10] B. Ferčec, X. Chen, V. G. Romanovski, Integrability conditions for complex systems with homogeneous quintic nonlinearities, J. Appl. Anal. Comput., 2011, 1(1), 9-20.

    Google Scholar

    [11] B. Ferčec, J Giné, Y. Liu, V. G. Romanovski, Integrability conditions for Lotka-Volterra planar complex quartic systems having homogeneous nonlinearities, Acta Appl. Math., 2013, 124, 107-122.

    Google Scholar

    [12] B. Ferčec, J Giné, V. G. Romanovski, V. F. Edneral, Integrability of complex planar systems with homogeneous nonlinearities, J. Math. Anal. Appl., 2016, 434(1), 894-914.

    Google Scholar

    [13] A. Fronville, A. P. Sadovski, H. Żołądek, Solution of the 1:-2 resonant center problem in the quadratic case, Fund. Math., 1998, 157, 191-207.

    Google Scholar

    [14] J. Giné, On some open problems in planar differential systems and Hilbert's 16th problem, Chaos Solitons Fractals, 2007, 31(5), 1118-1134.

    Google Scholar

    [15] J. Giné, Z. Kadyrsizova, Y. Liu, V. G. Romanovski, Linearizability conditions for Lotka-Volterra planar complex quartic systems having homogeneous nonlinearities, Comput. Appl. Math., 2011, 61(4), 1190-1201.

    Google Scholar

    [16] J. Giné, V. G. Romanovski, Linearizability conditions for Lotka-Volterra planar complex cubic systems, J. Phys. A, Math. Theor., 2009, 42(22), 225206.

    Google Scholar

    [17] J. Giné, V. G. Romanovski, Integrability conditions for Lotka-Volterra planar complex quintic systems, Nonlinear Anal. Real World Appl., 2010, 11, 2100-2105.

    Google Scholar

    [18] J. Giné, X. Santallusia, Essential variables in the integrability problem of planar vector fields, Phys. Lett. A, 2011, 375, 291-297.

    Google Scholar

    [19] S. Gravel, P. Thibault, Integrability and linearizability of the Lotka-Volterra System with a saddle point with rational hyperbolicity ratio, J. Differential Equations, 2002, 184, 20-47.

    Google Scholar

    [20] M. Han, K. Jiang, Normal forms of integrable systems at a resonant saddle, Ann. Differential Equations, 1998, 14(2), 150-155.

    Google Scholar

    [21] Z. Hu, V. G. Romanovski, D. S. Shafer, 1:-3 resonant centers on C2 with homogeneous cubic nonlinearities, Comput. Appl. Math., 2008, 56(8), 1927-1940.

    Google Scholar

    [22] C. Liu, G. Chen, G. Chen, Integrability of Lotka-Volterra type systems of degree 4, J. Math. Anal. Appl., 2012, 388(2), 1107-1116.

    Google Scholar

    [23] C. Liu, G. Chen, C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Differential Equations, 2004, 198(2), 301-320.

    Google Scholar

    [24] A. M. Liapunov, Stability of Motion. With a contribution by V. Pliss. Translated by F. Abramovici and M. Shimshoni. New York:Academic Press, 1966.

    Google Scholar

    [25] J. F. Mattei, R. Moussu, Holonomie et intégrales premières, Ann. Sci. Ecole Normale Superieure, 1980, 13, 469-523.

    Google Scholar

    [26] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, J. Math. Pures et. Appl. (Sér. 3), 1881, 7, 375-422,(Sér. 3), 1882, 8, 251-296,(Sér. 4), 1885, 1, 167-244,(Sér. 4), 1886, 2, 151-217.

    Google Scholar

    [27] V. G. Romanovski, X. Chen, Z. Hu, Linearizability of linear system perturbed by fifth degree homogeneous polynomials, J. Phys. A Math. Theor., 2007, 40(22), 5905-5919.

    Google Scholar

    [28] V. G. Romanovski, D. S. Shafer, The Center and Cyclicity Problems:A Computational Algebra Approach, Birkhüser, Boston, 2009.

    Google Scholar

    [29] H. Zo lądek, _The problem of center for resonant singular points of polynomial vector fields, J. Differential Equations, 1997, 137(1), 94-118.

    Google Scholar

Article Metrics

Article views(1917) PDF downloads(781) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint