2018 Volume 8 Issue 6
Article Contents

Minzhi Wei, Xianbo Sun, Hongying Zhu. BIFURCATIONS OF TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1851-1862. doi: 10.11948/2018.1851
Citation: Minzhi Wei, Xianbo Sun, Hongying Zhu. BIFURCATIONS OF TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1851-1862. doi: 10.11948/2018.1851

BIFURCATIONS OF TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION

  • Fund Project:
  • In this paper, the traveling wave solutions for a generalized CamassaHolm equation ut-uxxt=1/2 (p+1)(p+2)upux-1/2p(p-1)up-2ux3-2pup-1uxuxx-upuxxx are investigated. By using the bifurcation method of dynamical systems, three major results for this equation are highlighted. First, there are one or two singular straight lines in the two-dimensional system under some different conditions. Second, all the bifurcations of the generalized CamassaHolm equation are given for p either positive or negative integer. Third, we prove that the corresponding traveling wave system of this equation possesses peakon, smooth solitary wave solution, kink and anti-kink wave solution, and periodic wave solutions.
    MSC: 35C08;37K40;74J35;35Q51
  • 加载中
  • [1] S. C. Anco, E. Recio, M. L. Gandarias and M. S. Bruzon, A nonlinear generalization of the Camassa-Holm equation with peakon solutions, Dynamical Systems. Diff. Equat. Appl. AIMS Proceedings, 2015 Special, 29-37.

    Google Scholar

    [2] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, New York:Springer-Verlag, 1971.

    Google Scholar

    [3] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71, 1661-1664,.

    Google Scholar

    [4] R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 1994, 31, 1-33.

    Google Scholar

    [5] A. Constantin, Existence of permanent and breaking waves for a shallow water equation:a geometric approach, Ans. Inst. Fourier (Grenoble), 2000, 50, 321-362.

    Google Scholar

    [6] A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 2000, 33, 75-91.

    Google Scholar

    [7] A. Y. Chen, J. B. Li, X. J. Deng and W.T. Huang, Traveling wave solutions of the Fornberg-Whitham equation, Appl. Math. Comput., 2009, 215, 3068-3075.

    Google Scholar

    [8] A. Y. Chen and J. B. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 2010, 369, 758-766.

    Google Scholar

    [9] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 2002, 133, 1463-1474.

    Google Scholar

    [10] D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions, J. Non. Math. Phys., 2005, 12, 380-394.

    Google Scholar

    [11] M. A. Han, Bifurcation theory of limit cycles of planar systems, in:A. Canada, P. Drabek, A. Fonda (Eds.), Handbook of differential equations, Ordinary differential equations, vol. 3, Elsevier, 2006.

    Google Scholar

    [12] M. A. Han, J. M. Yang, A. A. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dyn. Diff. Equat., 2008, 20, 923-944.

    Google Scholar

    [13] J. B. Li and Y. Zhang, Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH-DP equation, Nonlinear Anal.:Real World Appl., 2009, 10, 2502-2507.

    Google Scholar

    [14] J. B. Li and H. H. Dai, On the study of singular nonlinear traveling wave equations:Dynamical System Approach, Beijing:Science Press, 2007.

    Google Scholar

    [15] J. B. Li and F. J. Chen, Exact traveling wave solutions and bifurcations of the dual Ito equation, Nonlinear Dyn., 2015, 82, 1537-1550.

    Google Scholar

    [16] J. B. Li, W. J. Zhu and G. R. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcat. Chaos, 2016, 12, 1650207.

    Google Scholar

    [17] Z. R. Liu and T. F. Qian, Peakons of the Camassa-Holm equation, Appl. Math. Model., 2002, 26, 473-480.

    Google Scholar

    [18] Z. J. Qiao and G. P. Zhang, On peaked and smooth solitons for the CamassaHolm equation, Europhys. Lett., 2006, 73, 657-663.

    Google Scholar

    [19] J. W. Shen, W. Xu and W. Li, Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons, Chaos, Solitons & Fract., 2006, 27, 413-425.

    Google Scholar

    [20] A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Appl. Math. Comput., 2005, 165, 485-501.

    Google Scholar

    [21] M. Z. Wei, X. B. Sun and S. Q. Tang, Single peak solitary wave solutions for the CH-KP(2,1) equation under boundary condition, J. Diff. Equat., 2015, 259, 628-641.

    Google Scholar

    [22] G. P. Zhang and Z. J. Qiao, Cuspons and smooth solitons of the DegasperisProcesi equation under inhomogeneous boundary condition, Math. Phys. Anal. Geom., 2007, 10, 205-225.

    Google Scholar

    [23] L. N. Zhang and A. Y. Chen, Exact loop solitons, cuspons, compactons and smooth solitons for the Boussinesq-like B(2,2) equation, Proc. Roman. Acad. A., 2014, 15, 11-17.

    Google Scholar

    [24] L. N. Zhang, A. Y. Chen and J. D. Tang, Special exact soliton solutions for the K(2,2) equation with non-zero constant pedestal, Appl. Math. Comput., 2011, 218, 4448-4457.

    Google Scholar

    [25] W. J. Zhu and J. B. Li, Exact traveling wave solutions and bifurcations of the Biswas-Milovic equation, Non. Dyn., 2016, 84, 1973-1987.

    Google Scholar

Article Metrics

Article views(1955) PDF downloads(950) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint