[1]
|
S. C. Anco, E. Recio, M. L. Gandarias and M. S. Bruzon, A nonlinear generalization of the Camassa-Holm equation with peakon solutions, Dynamical Systems. Diff. Equat. Appl. AIMS Proceedings, 2015 Special, 29-37.
Google Scholar
|
[2]
|
P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, New York:Springer-Verlag, 1971.
Google Scholar
|
[3]
|
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71, 1661-1664,.
Google Scholar
|
[4]
|
R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 1994, 31, 1-33.
Google Scholar
|
[5]
|
A. Constantin, Existence of permanent and breaking waves for a shallow water equation:a geometric approach, Ans. Inst. Fourier (Grenoble), 2000, 50, 321-362.
Google Scholar
|
[6]
|
A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 2000, 33, 75-91.
Google Scholar
|
[7]
|
A. Y. Chen, J. B. Li, X. J. Deng and W.T. Huang, Traveling wave solutions of the Fornberg-Whitham equation, Appl. Math. Comput., 2009, 215, 3068-3075.
Google Scholar
|
[8]
|
A. Y. Chen and J. B. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 2010, 369, 758-766.
Google Scholar
|
[9]
|
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 2002, 133, 1463-1474.
Google Scholar
|
[10]
|
D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions, J. Non. Math. Phys., 2005, 12, 380-394.
Google Scholar
|
[11]
|
M. A. Han, Bifurcation theory of limit cycles of planar systems, in:A. Canada, P. Drabek, A. Fonda (Eds.), Handbook of differential equations, Ordinary differential equations, vol. 3, Elsevier, 2006.
Google Scholar
|
[12]
|
M. A. Han, J. M. Yang, A. A. Tarta and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dyn. Diff. Equat., 2008, 20, 923-944.
Google Scholar
|
[13]
|
J. B. Li and Y. Zhang, Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH-DP equation, Nonlinear Anal.:Real World Appl., 2009, 10, 2502-2507.
Google Scholar
|
[14]
|
J. B. Li and H. H. Dai, On the study of singular nonlinear traveling wave equations:Dynamical System Approach, Beijing:Science Press, 2007.
Google Scholar
|
[15]
|
J. B. Li and F. J. Chen, Exact traveling wave solutions and bifurcations of the dual Ito equation, Nonlinear Dyn., 2015, 82, 1537-1550.
Google Scholar
|
[16]
|
J. B. Li, W. J. Zhu and G. R. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcat. Chaos, 2016, 12, 1650207.
Google Scholar
|
[17]
|
Z. R. Liu and T. F. Qian, Peakons of the Camassa-Holm equation, Appl. Math. Model., 2002, 26, 473-480.
Google Scholar
|
[18]
|
Z. J. Qiao and G. P. Zhang, On peaked and smooth solitons for the CamassaHolm equation, Europhys. Lett., 2006, 73, 657-663.
Google Scholar
|
[19]
|
J. W. Shen, W. Xu and W. Li, Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons, Chaos, Solitons & Fract., 2006, 27, 413-425.
Google Scholar
|
[20]
|
A. M. Wazwaz, A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Appl. Math. Comput., 2005, 165, 485-501.
Google Scholar
|
[21]
|
M. Z. Wei, X. B. Sun and S. Q. Tang, Single peak solitary wave solutions for the CH-KP(2,1) equation under boundary condition, J. Diff. Equat., 2015, 259, 628-641.
Google Scholar
|
[22]
|
G. P. Zhang and Z. J. Qiao, Cuspons and smooth solitons of the DegasperisProcesi equation under inhomogeneous boundary condition, Math. Phys. Anal. Geom., 2007, 10, 205-225.
Google Scholar
|
[23]
|
L. N. Zhang and A. Y. Chen, Exact loop solitons, cuspons, compactons and smooth solitons for the Boussinesq-like B(2,2) equation, Proc. Roman. Acad. A., 2014, 15, 11-17.
Google Scholar
|
[24]
|
L. N. Zhang, A. Y. Chen and J. D. Tang, Special exact soliton solutions for the K(2,2) equation with non-zero constant pedestal, Appl. Math. Comput., 2011, 218, 4448-4457.
Google Scholar
|
[25]
|
W. J. Zhu and J. B. Li, Exact traveling wave solutions and bifurcations of the Biswas-Milovic equation, Non. Dyn., 2016, 84, 1973-1987.
Google Scholar
|