2018 Volume 8 Issue 6
Article Contents

Haibin Chen, Yiju Wang. HIGH-ORDER COPOSITIVE TENSORS AND ITS APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1863-1885. doi: 10.11948/2018.1863
Citation: Haibin Chen, Yiju Wang. HIGH-ORDER COPOSITIVE TENSORS AND ITS APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(6): 1863-1885. doi: 10.11948/2018.1863

HIGH-ORDER COPOSITIVE TENSORS AND ITS APPLICATIONS

  • Fund Project:
  • With the coming of the big data era, high-order high-dimensional structured tensors received much attentions of researchers' in recent years, and now they are developed into a new research branch in mathematics named multilinear algebra. As a special kind of structured tensor, the copositive tensor receives a special concern due to its wide applications in vacuum stability of a general scalar potential, polynomial optimization, tensor complementarity problem and tensor eigenvalue complementarity problem. In this review, we will give a simple survey on recent advances of high-order copositive tensors and its applications. Some potential research directions in the future are also listed in the paper.
    MSC: 65H17;15A18;90C30
  • 加载中
  • [1] X. L. Bai, Z. H. Huang, Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 2016, 170,72-84.

    Google Scholar

    [2] J. Cai, An algorithm for hamiltonian cycles under implicit degree conditions, Ars Combinatoria, 2015, 121, 305-313.

    Google Scholar

    [3] J. Cai, An implicit 3 type condition for heavy cycles in weighted graphs, Ars Combinatoria, 2014, 115, 211-218.

    Google Scholar

    [4] J. Cai, H. Li, An implicit degree condition for relative length of long paths and cycles in graphs, Acta Math. Appl. Sinica, English Series, 2016, 32, 365-372.

    Google Scholar

    [5] J. Cai, H. Li, Hamilton cycles in implicit 2-heavy graphs, Graphs and Combinatorics, 2016, 32, 1329-1337.

    Google Scholar

    [6] J. Cai, H. Li, W. Ning, An implicit weighted degree condition for heavy cycles, Discussiones Mathematicae Graph Theory, 2014, 34, 801-810.

    Google Scholar

    [7] J. Cai, H. Li, W. Ning, An implicit degree condition for hamiltonian cycles, Ars Combinatoria, 2013, 108, 365-378.

    Google Scholar

    [8] J. Cai, H. Li, Q. Sun, Longest cycles in 4-connected graphs, Disc. Math., 2017, 340, 2955-2966.

    Google Scholar

    [9] J. Cai, L. Yu, J. Cai, Implicit degree sum condition for long cycles, Ars Combinatoria, 2017, 130, 143-149.

    Google Scholar

    [10] J. Cai, Y. Zhang, Forbidden subgraph conditions for hamilton cycles in implicit claw-heavy graphs, Ars Combinatoria, 2016, 126, 383-393.

    Google Scholar

    [11] H. Che, H. Chen, M. Li, A new simultaneous iterative method with a parameter for solving the extended split equality problem and the extended split equality fixed point problem, Numer. Algorithm, 2018. Doi:10.1007/s11075-018-0482-6.

    Google Scholar

    [12] M. Che, L. Qi and Y. Wei, Positive definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 2016, 168, 475-487.

    Google Scholar

    [13] H. Che, Y. Wang, M. Li, A smoothing inexact Newton method for P0 nonlinear complementarity problem, Front. Math. in China, 2012, 7, 1043-1058.

    Google Scholar

    [14] H. Chen, A new extra-gradient method for generalized variational inequality in Euclidean space, Fixed Point Theory & Appl., 2013, 2013, 1-11.

    Google Scholar

    [15] H. Chen, Y. Chen, G. Li, L. Qi, A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Linear Algebra Appl., 2018, 25, e2125.

    Google Scholar

    [16] H. Chen, Z.H. Huang, L. Qi, Copositivity Detection of Tensors:Theory and Algorithm, J. Optim. Theory Appl., 2017, 174, 746-761.

    Google Scholar

    [17] H. Chen, Z. Huang, L. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 2018, 69, 133-158.

    Google Scholar

    [18] H. Chen, G. Li, L. Qi, SOS Tensor Decomposition:Theory and Applications, Commun. Math. Sciences, 2016, 8, 2073-2100.

    Google Scholar

    [19] H. Chen, L. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Indus. Manag. Optim., 2015, 11, 1263-1274.

    Google Scholar

    [20] H. Chen, L. Qi, Y. Song, Column Sufficient Tensors and Tensor Complementarity Problems. Front. Math. China, 2018, 13(2), 255-276.

    Google Scholar

    [21] H. Chen, Y. Wang, A Family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl. Math. Comput., 2011, 218, 4012-4016.

    Google Scholar

    [22] H. Chen, Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 2017, 12, 1289-1302.

    Google Scholar

    [23] H. Chen, Y. Wang, G. Wang, Strong convergence of extragradient method for generalized variational inequalities in Hilbert space, J. Inequalities & Appl., 2014, 2014, 223.

    Google Scholar

    [24] H. Chen, Y. Wang, Y. Xu, An alternative extragradient projection method for quasi-equilibrium problems, J. Ineq. Appl., 2018, 2018, 26.

    Google Scholar

    [25] H. Chen, Y. Wang, H. Zhao, Finite convergence of a projected proximal point algorithm for the generalized variational inequalities, Operations Research Letters, 2012, 40, 303-305.

    Google Scholar

    [26] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 2012, 436, 3268-3292.

    Google Scholar

    [27] W. Ding, Y. Wei, Theory and Computation of Tensors. Multi-dimensional Arrays, Elsevier/Academic Press, London, 2016.

    Google Scholar

    [28] J. Fan, J. Nie, A. Zhou, Tensor eigenvalue complementarity problems, Math. Prog., 2017. DOI:10.1007/s10107-017-1167-y.

    Google Scholar

    [29] Q. Feng, F. Meng, Some generalized OstrowskiCGrss type integral inequalities, Compu. Math. Appl., 2012, 63, 652-659.

    Google Scholar

    [30] Q. Feng, F. Meng, Generalized Ostrowski type inequalities formultiple points on time scales involving functions of two independent variables, J Ineq. Appl., 2012, 2012, 74.

    Google Scholar

    [31] Q. Feng, F. Meng, B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on times scales, J. Math. Anal. Appl., 2011, 382, 772-784.

    Google Scholar

    [32] Q. Feng, F. Meng, Y. Zhan, Generalized Gronwall Bellman type discrete inequalities and their application, J. Ineq. & Appl., 12011, 2011, 47.

    Google Scholar

    [33] Q. Feng, F. Meng, Y. Zhang, B. Zheng, J. Zhou, Some nonlinear delay integral inequalities on time scales arising in the theory of dynamics equations, J. Ineq. & Appl., 2011, 2011, 29.

    Google Scholar

    [34] Q. Feng, F. Meng, Y. Zhang, Some new finite difference inequalities arising in the theory of difference equation, Advances in differencial equations, 2011, 2011, 21.

    Google Scholar

    [35] D. Feng, M. Sun, X.Wang, A family of conjugate gradient method for largescale nonlinear equations, Journal of Inequalities and Application, 2017, 2017, 236.

    Google Scholar

    [36] C. J. Hillar, L. H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 2013, 60, 45.

    Google Scholar

    [37] Z.H. Huang, L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 2017, 66, 557-576.

    Google Scholar

    [38] M.R. Kannan, N. Shaked-Monderer, A. Berman, Some properties of strong H-tensors and general H-tensors, Linear Algebra &Appl., 2015, 476, 42-55.

    Google Scholar

    [39] K. Kannike, Vacuum stability of a general scalar potential of a few fields, European Physical Journal C, 2016, 76, 324.

    Google Scholar

    [40] T. Kolda, Numerical optimization for symmetric tensor decomposition, Math. Prog., Ser.B, 2015, 151, 225-248.

    Google Scholar

    [41] X. Kuang, L. Zuluaga, Completely Positive and Completely Positive Semidefinite Tensor Relaxations for Polynomial Optimization, J. Glob Optim., 2017. Doi:10.1007/s10898-017-0558-1.

    Google Scholar

    [42] C. Li, Y. Li, Double B tensors and quasi-double B tensors, Linear Algebra & Appl., 2015, 466, 343-356.

    Google Scholar

    [43] C. Li, L. Qi, Y. Li, MB-tensors and MB0-tensors, Linear Algebra & Appl., 2015,484, 141-153.

    Google Scholar

    [44] C. Li, F. Wang, J. Zhao, Y. Zhu, Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 2014, 255, 1-14.

    Google Scholar

    [45] S. Lian, Smoothing approximation to l1 exact penalty function for inequality constrained optimization, Appl. Math. Comput., 2012, 219(6), 3113-3121.

    Google Scholar

    [46] S. Lian, Y. Duan, Smoothing of the lower-order exact penalty function for inequality constrained optimization, J. Ineq. Appl., 2016, 2016, 185.

    Google Scholar

    [47] S. Lian, L. Zhang, A simple smooth exact penalty function for smooth optimization problem, J. Systems Science and Complexity, 2012, 25(5), 521-528.

    Google Scholar

    [48] Z. Liang, E. Shan, L. Kang, Clique-Perfectness of Claw-Free Planar Graphs, Graphs and Combinatorics, 2016, 32, 2551-2562.

    Google Scholar

    [49] Z. Liang, E. Shan, L. Kang, Clique-coloring claw-free graphs, Graphs and Combinatorics, 2016, 32, 1472-1488.

    Google Scholar

    [50] Z. Liang, E. Shan, Y. Zhang, A linear-time algorithm for clique-coloring problem in circular-arc graphs, J. Combin. Optim., 2017, 33, 147-155.

    Google Scholar

    [51] C. Ling, H. He, L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 2016, 63(1), 143-168.

    Google Scholar

    [52] B. Liu, B. Qu, Na. Zheng, A successive projection algorithm for solving the multiple-sets split feasibility problem, Numer. Functional Anal. Optim., 2014, 35, 1459-1466.

    Google Scholar

    [53] A. Liu, G. Chen, On the Hermitian positive definite solutions of nonlinear matrix equation Xs + ???20180616??? Ai X-tiAi=Q, Appl. Math. Comput., 2014, 243, 950-959.

    Google Scholar

    [54] Q. Liu, A. Liu, Block SOR Methods for the Solution of Indefinite Least Squares Problems, Calcolo, 2014, 51, 367-379.

    Google Scholar

    [55] Z. Luo, L. Qi, Completely positive tensors:Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 2016, 37, 1675-1698.

    Google Scholar

    [56] X. Ma, P. Wang, W. Wei, Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains, J. Functional Anal., 2018, 274, 252-277.

    Google Scholar

    [57] M. N. L. Narasimhan, Principles of Continuum Mechanics, John Wiley & Sons, New York, 1993.

    Google Scholar

    [58] Q. Ni, L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Global Optim., 2015, 61(4), 627-641.

    Google Scholar

    [59] X. Pan, H. Che, Y. Wang, A high-accuracy compact conservative scheme for generalized regularized long-wave equation, Boundary Value Problems, 2015, 2015, 141.

    Google Scholar

    [60] X. Pan, Y. Wang, L. Zhang, Numerical analysis of a pseudo-compact C-N conservative scheme for the Rosenau-KdV equation coupling with the RosenauRLW equation, Boundary Value Problems, 2015, 2015, 65.

    Google Scholar

    [61] J. Pena, J. C. Vera, L. F. Zuluaga, Completely positive reformulations for polynomial optimization, Math. Prog., 2014, 151(2), 405-431.

    Google Scholar

    [62] L. Qi, Eigenvalue of a real supersymmetric tensor, J. Sym. Comput., 2005, 40, 1302-1324.

    Google Scholar

    [63] L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra & Appl., 2013, 439, 228-238.

    Google Scholar

    [64] L. Qi, H+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sciences,2014, 12, 1045-1064.

    Google Scholar

    [65] L. Qi, H. Chen, Y. Chen, Tensor eigenvalues and their applications. Advances in Mechanics and Math., Singapore, Springer, 2018.

    Google Scholar

    [66] L. Qi, Z. Luo, Tensor Anal.:Spectral Theory and Special Tensors, SIAM, Philadelpia, USA, 2017.

    Google Scholar

    [67] L. Qi, Y. Song, An even order symmetric B tensor is positive definite, Linear Algebra & Appl., 2014, 457, 303-312.

    Google Scholar

    [68] L. Qi, C. Xu, Y. Xu, Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J. Matrix Anal. Appl., 2014, 35(4), 1227-1241.

    Google Scholar

    [69] B. Qu, H. Chang, Remark on the Successive Projection Algorithm for the Multiple-Sets Split Feasibility Problem, Numer. Functional Anal. Optim., 2017, 38, 1614-1623.

    Google Scholar

    [70] B. Qu, B. Liu, N. Zheng, On the computation of the step-size for the CQ-like algorithms for the split feasibility problem, Appl. Math. Comput., 2015, 262, 218-223.

    Google Scholar

    [71] A. Seeger, Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra Appl., 1999, 292, 1-14.

    Google Scholar

    [72] J. Y. Shao, A general product of tensors with applications, Linear Algebra Appl.,2013, 439, 2350-2366.

    Google Scholar

    [73] V. De Silva, L. Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 2008, 30(3), 1084-1127.

    Google Scholar

    [74] Y. Song, L. Qi, Necessary and sufficient conditions for copositive tensors, Linear & Multilinear Algebra, 2015, 63(1), 120-131.

    Google Scholar

    [75] Y. Song, L. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optim. Letters, 2017, 11(7), 1407-1426.

    Google Scholar

    [76] Y. Song, L. Qi, Tensor complementarity problem and semi-positive tensors, J Optim. Theory Appl., 2016, 169, 1069-1078.

    Google Scholar

    [77] Y. Song, L. Qi, Eigenvalue analysis of constrained minimization problem for homogeneous polynomials, J. Global Optim., 2016, 64, 563-575.

    Google Scholar

    [78] X. Su, Enumerating closed flows on forks, Disc. Math., 2017, 340, 3002-3010.

    Google Scholar

    [79] X. Su, The truncated determinants of combinatorial rectangular arrays, Ars Combinatoria, 2017, 133, 205-216.

    Google Scholar

    [80] F. Sun, L. Liu, Y. Wu, Finite time blow-up for a thin-film equation with initial data at arbitrary energy level, J. Math. Anal. Appl., 2018, 458, 9-20.

    Google Scholar

    [81] M. Sun, Y. Wang, J. Liu, Generalized Peaceman-Rachford splitting method for multiple-block separable convex programming with applications to robust PCA, Calcoco, 2017, 54, 77-94.

    Google Scholar

    [82] G. Wang, Existence-stability theorems for strong vector set-valued equilibrium problems in reflexive Banach space, J. Ineq. Appl., 2015, 2015, 239.

    Google Scholar

    [83] X. Wang, Alternating proximal penalization algorithm for the modified multiplesets split feasibility problems, J. Ineq. Appl., 2018, 2018, 48.

    Google Scholar

    [84] X. Wang, H. Chen, Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China, 2017, Doi:10.1007/s11464-018-0675-2.

    Google Scholar

    [85] Y. Wang, Louis Caccetta, G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra & Appl., 2015, 22, 1059-1076.

    Google Scholar

    [86] G. Wang, H. Che, Generalized strict feasibility and solvability for generalized vector equilibrium problem with set-valued map in reflexive Banach spaces, J. Ineq. Appl., 2012, 2012, 1-11.

    Google Scholar

    [87] G. Wang, H. Che, H. Chen, Feasibility-solvability theorems for generalized vector equilibrium problem in reflexive Banach spaces, Fixed Point Theory and Appl., 2012, 38, 1-13.

    Google Scholar

    [88] Y. Wang, Z. H. Huang, X.L. Bai, Exceptionally regular tensors and complementarity problems, Optim. Methods Software, 2016, 31(4), 815-828.

    Google Scholar

    [89] Y. Wang, L. Qi, X. Zhang, A practical method for computing the largest Meigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra & Appl., 2009, 16, 589-601.

    Google Scholar

    [90] G. Wang, X. Yang, T. Cheng, Generalized Levitin-Polyak well-posedness for generalized semi-infinite programs, Numer. Functional Anal. Optim., 2013, 34, 695-711.

    Google Scholar

    [91] P. Wang, The concavity of the Gaussian curvature of the convex level sets of minimal surfaces with respect to the height, Pacific J. Math., 2014, 267(2), 489-509.

    Google Scholar

    [92] P. Wang, C. Shen, A differentiable sphere theorem with pinching integral Ricci curvature, Acta Mathematica Scientia, 2011, 31(1), 321-330.

    Google Scholar

    [93] P. Wang, X. Wang, The geometric properties of harmonic function on 2-dimensional Riemannian manifolds, Nonlinear Anal., 2014, 103, 2-8.

    Google Scholar

    [94] P. Wang, Y. Wen, A differentiable sphere theorem with positive Ricci curvature and reverse volume pinching, Science China Math., 2011, 54(3), 603-610.

    Google Scholar

    [95] P. Wang, D. Zhang, Convexity of Level Sets of Minimal Graph on Space Form with Nonnegative Curvature, J. Differential Equations, 2017, 262, 5534-5564.

    Google Scholar

    [96] P. Wang, L. Zhao, Some geometrical properties of convex level sets of minimal graph on 2-dimensional Riemannian manifolds, Nonlinear Anal., 2016, 130, 1-17.

    Google Scholar

    [97] Y. Wang, K. Zhang, H. Sun, Criteria for strong H-tensors, Front. Math. China, 2016, 11, 577-592.

    Google Scholar

    [98] G. Wang, G. Zhou, L. Caccetta, Z-eigencvalue inclusion theorems for tensors, Disc. Continuous Dynamical Systems, Series B, 2017, 22(1), 187-198.

    Google Scholar

    [99] W. Xia, L. F. Zuluaga, Completely positive reformulations of polynomial optimization problems with linear constraints, Optim Lett., 2017, 11(7), 1229-1241.

    Google Scholar

    [100] L. Zhang, L. Qi, G. Zhou, M-tensors and some applications, SIAM J. on Matrix Anal. and Appl., 2014, 35, 437-452.

    Google Scholar

    [101] X. Zhang, H. Jiang, Y. Wang, A smoothing Newton-type method for generalized nonlinear complementarity problem, J. Comput. Appl. Math., 2008, 212, 75-85.

    Google Scholar

    [102] X. Zhang, L. Liu, The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term, J. Math. Anal. Appl., 2010, 371(1), 300-308.

    Google Scholar

    [103] X. Zhang, L. Liu, A necessary and sufficient condition of positive solutions for nonlinear singular differential systems with four-point boundary conditions, Appl. Math. Comput., 2010, 215(10), 3501-3508.

    Google Scholar

    [104] X. Zhang, L. Liu, Y. Wu, Y. Cui, New Result on the Critical Exponent for Solution of an OrdinaryFractional Differential Problem, J. Function Spaces, 2017, 2017, 1-4.

    Google Scholar

    [105] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a fractional advection dispersion equationin anomalous diffusion, Appl. Math. Letters, 2017, 66, 1-8.

    Google Scholar

    [106] X. Zhang, L. Liu, Y. Wu, Y. Cui, Entire blow-up solutions for a quasilinear pLaplacian Schrödingerequation with a non-square diffusion term, Appl. Math. Letters, 2017, 74, 85-93.

    Google Scholar

    [107] X. Zhang, C. Mao, L. Liu, Y. Wu, Exact Iterative Solution for an Abstract FractionalDynamic System Model for Bioprocess, Qual. Theory Dyn. Syst., 2017, 16, 205-222.

    Google Scholar

    [108] X. Zhang, L. Liu, Y. Wu, The entire large solutions for a quasilinear Schrödinger elliptic equation by the dual approach, Appl. Math. Letters, 2016, 55, 1-9.

    Google Scholar

    [109] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Letters, 2014, 27, 26-33.

    Google Scholar

    [110] X. Zhang, L. Liu, Y. Wu, Variational structure and multiple solutions for a fractional advection-dispersion equation, Comput. Math. Appl., 2014, 68(12), 1794-1805.

    Google Scholar

    [111] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving derivatives, Commun. Nonlinear Sci. Numer. Simulat., 2013, 18(6), 1400-1409.

    Google Scholar

    [112] X. Zhang, L. Liu, Y. Wu, Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives, Appl. Math. Comput., 2012, 219(4), 1420-1433.

    Google Scholar

    [113] X. Zhang, L. Liu, Y. Wu, The eigenvalue problem for a singular higher fractional differential equation involving fractional derivatives, Apll. Math. Comput., 2012, 218(17), 8526-8536.

    Google Scholar

    [114] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the RiemannCStieltjes integral boundary condition, Apll. Math. Comput., 2014, 235, 412-422.

    Google Scholar

    [115] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, The spectral analysis for a singular fractional differential equation with a signed measure, Apll. Math. Comput., 2015, 257, 252-263.

    Google Scholar

    [116] X. Zhang, L. Liu, Y. Wu, Caccetta Lou, Entire large solutions for a Schrödinger systems with a nonlinear random operator, J. Math. Anal. Appl., 2015, 423(2), 1650-1659.

    Google Scholar

    [117] X. Zhang, L. Liu, Y. Wu, Y. Lu, The iterative solutions of nonlinear fractional differential equations, Apll. Math. Comput., 2013, 219(9), 4680-4691.

    Google Scholar

    [118] H. Zhang, Y. Wang, A new CQ method for solving split feasibility problem, Front. Math. China, 5(2010) 37-46.

    Google Scholar

    [119] K. Zhang, Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 2016, 305, 1-10.

    Google Scholar

    [120] G. Zhou, G. Wang, L. Qi, M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra & Appl., 2018. DOI:10.1002/nla.2134

    Google Scholar

Article Metrics

Article views(2120) PDF downloads(1118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint