[1]
|
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 2016, 30, 2075-2081.
Google Scholar
|
[2]
|
D. Bansal and J. K. Prajapat, Certain geometric properties of the MittagLeffler functions, Complex Var. Elliptic Equ., 2016, 61, 338-350.
Google Scholar
|
[3]
|
M. Grag, P. Manohar and S. L. Kalla, A Mittag-Leffler-type function of two variables, Integral Transforms Spec. Funct., 2013, 24, 934-944.
Google Scholar
|
[4]
|
T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 1962, 104, 532-537.
Google Scholar
|
[5]
|
G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, 1903, 137, 554-558.
Google Scholar
|
[6]
|
S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de 1'Université,de Montréal, Montréal, 1982.
Google Scholar
|
[7]
|
H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 2016, 7, 123-145.
Google Scholar
|
[8]
|
H. M. Srivastava and D. Bansal, Close-to-convexity of a certain family of qMittag-Leffler functions, J. Nonlinear Var. Anal., 2017, 1, 61-69.
Google Scholar
|
[9]
|
H. M. Srivastava, B. A. Frasin and V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inform. Sci., 2017, 11, 635-641.
Google Scholar
|
[10]
|
H. M. Srivastava, A. Kilicman, Z. E. Abdulnaby and R. W. Ibrahim, Generalized convolution properties based on the modified Mittag-Leffler function, J. Nonlinear Sci. Appl., 2017, 10, 4284-4294.
Google Scholar
|
[11]
|
H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 2009, 211, 198-210.
Google Scholar
|
[12]
|
A. Wiman, Über den Fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 1905, 29, 191-201.
Google Scholar
|