2018 Volume 8 Issue 1
Article Contents

Xin Fei Liu, Yang Liu, Hong Li, Zhi Chao Fang, Jin Feng Wang. FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 229-249. doi: 10.11948/2018.229
Citation: Xin Fei Liu, Yang Liu, Hong Li, Zhi Chao Fang, Jin Feng Wang. FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 229-249. doi: 10.11948/2018.229

FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION

  • Fund Project:
  • In this paper, finite element method with high-order approximation for time fractional derivative is considered and discussed to find the numerical solution of time fractional convection-diffusion equation. Some lemmas are introduced and proved, further the stability and error estimates are discussed and analyzed, respectively. The convergence result O(hr+1 + τ3-α) can be derived, which illustrates that time convergence rate is higher than the order (2-α) derived by L1-approximation. Finally, to validate our theoretical results, some computing data are provided.
    MSC: 65N30;65M60;26A33
  • 加载中
  • [1] A. Atangana and A. Kilicman, Analytical solutions of the space-time fractional derivative of advection dispersion equation, Mathematical Problems in Engineering, 2013, 2013.

    Google Scholar

    [2] A. H. Bhrawy and D. Baleanu, A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Reports on Mathematical Physics, 2013, 72(2), 219-233.

    Google Scholar

    [3] H. Z. Chen and H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math. 2016, 296, 480-498.

    Google Scholar

    [4] M. Cui, A high-order compact exponential scheme for the fractional convectiondiffusion equation, J. Comput. Appl. Math., 2014, 255, 404-416.

    Google Scholar

    [5] M. H. Chen and W. H. Deng, A second-order numerical method for twodimensional two-sided space fractional convection diffusion equation, Appl. Math. Model., 2014, 38(13), 3244-3259.

    Google Scholar

    [6] Y. W. Du, Y. Liu, H. Li, Z.C. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 2017, 334, 108-126.

    Google Scholar

    [7] V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 2006, 22(3), 558-576.

    Google Scholar

    [8] L. B. Feng, P. Zhuang, F. Liu, I. Turner and J. Li, High-order numerical methods for the Riesz space fractional advection-dispersion equations, Comput. Math. Appl., 2016. DOI:10.1016/j.camwa.2016.01.015.

    Google Scholar

    [9] X. H. Gao, Y. Liu, H. Li and W. Gao, Finite element approximation for nonlinear modified time fractional diffusion equations, J. Comput. Complex. Appl., 2017, 3(1), 1-10.

    Google Scholar

    [10] G. H. Gao and H. W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys., 2015, 298, 520-538.

    Google Scholar

    [11] M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi, Two-dimensional Legendre wavelets for solving time fractional telegraph equation, Adv. Appl. Math. Mech., 2014, 6(2), 247-260.

    Google Scholar

    [12] V. R. Hosseini, E. Shivanian and W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 2015, 130, 33.

    Google Scholar

    [13] V. R. Hosseini, E. Shivanian and W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 2016, 312, 307-332.

    Google Scholar

    [14] H. Hejazi, T. Moroney and F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 2014, 255, 684-697.

    Google Scholar

    [15] Y. J. Jiang and J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 2011, 235(11), 3285-3290.

    Google Scholar

    [16] B. Jin, R. Lazarov, Y. K. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 2015, 281, 825-843.

    Google Scholar

    [17] Z. G. Liu, A. J. Cheng and X. L. Li, A second order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math., 2016, 1-15.

    Google Scholar

    [18] Y. Liu, M. Zhang, H. Li and J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 2017, 73(6), 1298-1314.

    Google Scholar

    [19] Y. Liu, Z. C. Fang, H. Li and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 2014, 243, 703-717.

    Google Scholar

    [20] Y. Liu, Y. W. Du, H. Li, S. He and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 2015, 70(4), 573-591.

    Google Scholar

    [21] Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225, 1533-1552.

    Google Scholar

    [22] H. F. Li, J. X. Cao and C. P. Li, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (Ⅲ), J. Comput. Appl. Math., 2016, 299, 159-175.

    Google Scholar

    [23] H. L. Liao, Y. Zhao and X. H. Teng, A weighted ADI scheme for subdiffusion equations, J. Sci. Comput., 2016, 69(3), 1144-1164.

    Google Scholar

    [24] F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 2014, 38(15), 3871-3878.

    Google Scholar

    [25] Y. Liu, Y. W. Du, H. Li and J. F Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 2016, 85, 2535-2548.

    Google Scholar

    [26] J. C. Li, Y. Q. Huang and Y. P. Lin, Developing finite element methods for maxwell's equations in a cole-cole dispersive medium, SIAM J. Sci. Comput., 2011, 33, 3153-3174.

    Google Scholar

    [27] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 2007, 191, 12-20.

    Google Scholar

    [28] C. P. Li, R.F. Wu and H. F. Ding, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations, Communications in Applied and Industrial Mathematics, 536, 2015. DOI:10.1685/journal.caim.

    Google Scholar

    [29] K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 2013, 51(1), 491-515.

    Google Scholar

    [30] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 2004, 172(1), 65-77.

    Google Scholar

    [31] H. X. Rui and J. Huang, Uniformly stable explicitly solvable finite difference method for fractional diffusion equations, East Asian Journal on Applied Mathematics, 2015, 5(1), 29-47.

    Google Scholar

    [32] E. Shivanian, Analysis of the time fractional 2-D diffusion-wave equation via moving least square (MLS) approximation, Int. J. Appl. Comput. Math. DOI:10.1007/s40819-016-0247-7.

    Google Scholar

    [33] E. Shivanian, Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numerical Methods for Partial Differential Equations, 2017, 33(3), 974-994.

    Google Scholar

    [34] S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 2013, 42, 371-386.

    Google Scholar

    [35] L. J. Su, W. Q. Wang and H. Wang, A characteristic difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 2011, 61, 946-960.

    Google Scholar

    [36] Z. B. Wang and S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15.

    Google Scholar

    [37] J. F. Wang, M. Zhang, H. Li and Y. Liu, Finite difference/H1-Galerkin MFE procedure for a fractional water wave model, J. Appl. Anal. Comput., 2016, 6(2), 409-428.

    Google Scholar

    [38] Y. M. Wang and T. Wang, Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations, Calcolo, 2015. DOI:10.1007/s10092-015-0150-3.

    Google Scholar

    [39] J. F. Wang, T. Q. Liu, H. Li, Y. Liu and S. He, Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 2017, 73(6), 1182-1196.

    Google Scholar

    [40] Y. J. Wang, Y. Liu, H. Li and J. F. Wang, Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation, Eur. Phys. J. Plus, 2016, 131, 61. DOI:10.1140/epjp/i2016-16061-3.

    Google Scholar

    [41] X. H. Yang, H. X. Zhang and D. Xu, Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 2014, 256, 824-837.

    Google Scholar

    [42] Y. Yang, Y.P. Chen, Y.Q. Huang and H.Y. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 2017, 73(6), 1218-1232. DOI:10.1016/j.camwa.2016.08.017.

    Google Scholar

    [43] S. B. Yuste and J. Quintana-Murillo, A finite difference method with nonuniform timesteps for fractional diffusion equations, Comput. Phys. Commun., 2012, 183(12), 2594-2600.

    Google Scholar

    [44] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

    Google Scholar

    [45] Y. N. Zhang, Z.Z. Sun and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 2014, 265, 195-210.

    Google Scholar

    [46] F. Zeng, C. Li, F. Liu and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 2015, 37(1), A55-A78.

    Google Scholar

    [47] M. Zheng, F. Liu, V. Anh and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model., 2016, 40(7), 4970-4985.

    Google Scholar

    [48] H. Zhang, F. Liu, M. S. Phanikumar and M. M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advectiondispersion model, Comput. Math. Appl., 2013, 66, 693-701.

    Google Scholar

    [49] Y. Y. Zheng, C.P. Li and Z.G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl., 2010, 59(5), 1718-1726.

    Google Scholar

    [50] Y. Zhao, W. Bu, J. Huang, Y. D. Liu and Y. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 2015, 257, 553-565.

    Google Scholar

    [51] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variableorder fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 2009, 47, 1760-1781.

    Google Scholar

Article Metrics

Article views(2802) PDF downloads(1124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint