|
[1]
|
A. Atangana and A. Kilicman, Analytical solutions of the space-time fractional derivative of advection dispersion equation, Mathematical Problems in Engineering, 2013, 2013.
Google Scholar
|
|
[2]
|
A. H. Bhrawy and D. Baleanu, A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients, Reports on Mathematical Physics, 2013, 72(2), 219-233.
Google Scholar
|
|
[3]
|
H. Z. Chen and H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math. 2016, 296, 480-498.
Google Scholar
|
|
[4]
|
M. Cui, A high-order compact exponential scheme for the fractional convectiondiffusion equation, J. Comput. Appl. Math., 2014, 255, 404-416.
Google Scholar
|
|
[5]
|
M. H. Chen and W. H. Deng, A second-order numerical method for twodimensional two-sided space fractional convection diffusion equation, Appl. Math. Model., 2014, 38(13), 3244-3259.
Google Scholar
|
|
[6]
|
Y. W. Du, Y. Liu, H. Li, Z.C. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 2017, 334, 108-126.
Google Scholar
|
|
[7]
|
V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 2006, 22(3), 558-576.
Google Scholar
|
|
[8]
|
L. B. Feng, P. Zhuang, F. Liu, I. Turner and J. Li, High-order numerical methods for the Riesz space fractional advection-dispersion equations, Comput. Math. Appl., 2016. DOI:10.1016/j.camwa.2016.01.015.
Google Scholar
|
|
[9]
|
X. H. Gao, Y. Liu, H. Li and W. Gao, Finite element approximation for nonlinear modified time fractional diffusion equations, J. Comput. Complex. Appl., 2017, 3(1), 1-10.
Google Scholar
|
|
[10]
|
G. H. Gao and H. W. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys., 2015, 298, 520-538.
Google Scholar
|
|
[11]
|
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi, Two-dimensional Legendre wavelets for solving time fractional telegraph equation, Adv. Appl. Math. Mech., 2014, 6(2), 247-260.
Google Scholar
|
|
[12]
|
V. R. Hosseini, E. Shivanian and W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 2015, 130, 33.
Google Scholar
|
|
[13]
|
V. R. Hosseini, E. Shivanian and W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 2016, 312, 307-332.
Google Scholar
|
|
[14]
|
H. Hejazi, T. Moroney and F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 2014, 255, 684-697.
Google Scholar
|
|
[15]
|
Y. J. Jiang and J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 2011, 235(11), 3285-3290.
Google Scholar
|
|
[16]
|
B. Jin, R. Lazarov, Y. K. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 2015, 281, 825-843.
Google Scholar
|
|
[17]
|
Z. G. Liu, A. J. Cheng and X. L. Li, A second order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math., 2016, 1-15.
Google Scholar
|
|
[18]
|
Y. Liu, M. Zhang, H. Li and J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 2017, 73(6), 1298-1314.
Google Scholar
|
|
[19]
|
Y. Liu, Z. C. Fang, H. Li and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 2014, 243, 703-717.
Google Scholar
|
|
[20]
|
Y. Liu, Y. W. Du, H. Li, S. He and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 2015, 70(4), 573-591.
Google Scholar
|
|
[21]
|
Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225, 1533-1552.
Google Scholar
|
|
[22]
|
H. F. Li, J. X. Cao and C. P. Li, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (Ⅲ), J. Comput. Appl. Math., 2016, 299, 159-175.
Google Scholar
|
|
[23]
|
H. L. Liao, Y. Zhao and X. H. Teng, A weighted ADI scheme for subdiffusion equations, J. Sci. Comput., 2016, 69(3), 1144-1164.
Google Scholar
|
|
[24]
|
F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 2014, 38(15), 3871-3878.
Google Scholar
|
|
[25]
|
Y. Liu, Y. W. Du, H. Li and J. F Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 2016, 85, 2535-2548.
Google Scholar
|
|
[26]
|
J. C. Li, Y. Q. Huang and Y. P. Lin, Developing finite element methods for maxwell's equations in a cole-cole dispersive medium, SIAM J. Sci. Comput., 2011, 33, 3153-3174.
Google Scholar
|
|
[27]
|
F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 2007, 191, 12-20.
Google Scholar
|
|
[28]
|
C. P. Li, R.F. Wu and H. F. Ding, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations, Communications in Applied and Industrial Mathematics, 536, 2015. DOI:10.1685/journal.caim.
Google Scholar
|
|
[29]
|
K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 2013, 51(1), 491-515.
Google Scholar
|
|
[30]
|
M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 2004, 172(1), 65-77.
Google Scholar
|
|
[31]
|
H. X. Rui and J. Huang, Uniformly stable explicitly solvable finite difference method for fractional diffusion equations, East Asian Journal on Applied Mathematics, 2015, 5(1), 29-47.
Google Scholar
|
|
[32]
|
E. Shivanian, Analysis of the time fractional 2-D diffusion-wave equation via moving least square (MLS) approximation, Int. J. Appl. Comput. Math. DOI:10.1007/s40819-016-0247-7.
Google Scholar
|
|
[33]
|
E. Shivanian, Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numerical Methods for Partial Differential Equations, 2017, 33(3), 974-994.
Google Scholar
|
|
[34]
|
S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 2013, 42, 371-386.
Google Scholar
|
|
[35]
|
L. J. Su, W. Q. Wang and H. Wang, A characteristic difference method for the transient fractional convection-diffusion equations, Appl. Numer. Math., 2011, 61, 946-960.
Google Scholar
|
|
[36]
|
Z. B. Wang and S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15.
Google Scholar
|
|
[37]
|
J. F. Wang, M. Zhang, H. Li and Y. Liu, Finite difference/H1-Galerkin MFE procedure for a fractional water wave model, J. Appl. Anal. Comput., 2016, 6(2), 409-428.
Google Scholar
|
|
[38]
|
Y. M. Wang and T. Wang, Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations, Calcolo, 2015. DOI:10.1007/s10092-015-0150-3.
Google Scholar
|
|
[39]
|
J. F. Wang, T. Q. Liu, H. Li, Y. Liu and S. He, Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 2017, 73(6), 1182-1196.
Google Scholar
|
|
[40]
|
Y. J. Wang, Y. Liu, H. Li and J. F. Wang, Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation, Eur. Phys. J. Plus, 2016, 131, 61. DOI:10.1140/epjp/i2016-16061-3.
Google Scholar
|
|
[41]
|
X. H. Yang, H. X. Zhang and D. Xu, Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 2014, 256, 824-837.
Google Scholar
|
|
[42]
|
Y. Yang, Y.P. Chen, Y.Q. Huang and H.Y. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 2017, 73(6), 1218-1232. DOI:10.1016/j.camwa.2016.08.017.
Google Scholar
|
|
[43]
|
S. B. Yuste and J. Quintana-Murillo, A finite difference method with nonuniform timesteps for fractional diffusion equations, Comput. Phys. Commun., 2012, 183(12), 2594-2600.
Google Scholar
|
|
[44]
|
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Google Scholar
|
|
[45]
|
Y. N. Zhang, Z.Z. Sun and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 2014, 265, 195-210.
Google Scholar
|
|
[46]
|
F. Zeng, C. Li, F. Liu and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 2015, 37(1), A55-A78.
Google Scholar
|
|
[47]
|
M. Zheng, F. Liu, V. Anh and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model., 2016, 40(7), 4970-4985.
Google Scholar
|
|
[48]
|
H. Zhang, F. Liu, M. S. Phanikumar and M. M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advectiondispersion model, Comput. Math. Appl., 2013, 66, 693-701.
Google Scholar
|
|
[49]
|
Y. Y. Zheng, C.P. Li and Z.G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl., 2010, 59(5), 1718-1726.
Google Scholar
|
|
[50]
|
Y. Zhao, W. Bu, J. Huang, Y. D. Liu and Y. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 2015, 257, 553-565.
Google Scholar
|
|
[51]
|
P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variableorder fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 2009, 47, 1760-1781.
Google Scholar
|