2018 Volume 8 Issue 1
Article Contents

Temesgen Desta Leta, Jibin Li. DYNAMICAL BEHAVIOUR AND EXACT SOLUTIONS OF THIRTEENTH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 250-271. doi: 10.11948/2018.250
Citation: Temesgen Desta Leta, Jibin Li. DYNAMICAL BEHAVIOUR AND EXACT SOLUTIONS OF THIRTEENTH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 250-271. doi: 10.11948/2018.250

DYNAMICAL BEHAVIOUR AND EXACT SOLUTIONS OF THIRTEENTH ORDER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

  • Fund Project:
  • In this paper, we considered the model of the thirteenth order derivatives of nonlinear Schrödinger equations. It is shown that a wave packet ansatz inserted into these equations leads to an integrable Hamiltonian dynamical sub-system. By using bifurcation theory of planar dynamical systems, in different parametric regions, we determined the phase portraits. In each of these parametric regions we obtain possible exact explicit parametric representation of the traveling wave solutions corresponding to homoclinic, hetroclinic and periodic orbits.
    MSC: 34A05;34C25-28;34M55;35Q51;35Q53;58F05;58F14;58F30;35C05;35C07;34C60
  • 加载中
  • [1] M. J. Ablowitz and P. A. Clarkson, Soliton, nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, New York, 1991.

    Google Scholar

    [2] G. P. Agrawal and Y. S. Kivshar, Optical Solitons:From Fibers to Photonic Crystals, Academic Press, San Diego, 2003.

    Google Scholar

    [3] P. F. Byrd and M.D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971.

    Google Scholar

    [4] B. M. Caradoc-Davies, R. Ballagh and J. K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates, Phys. Rev Lett., 1999, 83(5), 895-898.

    Google Scholar

    [5] K. Chow and C. Rogers, Localized and periodic wave patterns for a nonic nonlinear Schrödinger equation, Phy. Lett. A, 2013, 377, 2546-2550.

    Google Scholar

    [6] F. Dalfovo, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 1999, 71(3), 463-512.

    Google Scholar

    [7] J. Guckenheimer and P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983.

    Google Scholar

    [8] S. H. Han and Q. Park, Effect of self-steepening on optical solitons in a continuous wave background, Phys. Rev. E, 2011, 83(6), 066601-1-066601-6.

    Google Scholar

    [9] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton and Fractals, 2005, 26(3), 695-700.

    Google Scholar

    [10] J. Q. Hu, An algebraic method exactly solving two high-dimensional nonlinear evolution equations, Chaos, Solitons and Fractals, 2005, 23(2), 391-398.

    Google Scholar

    [11] J. Lee, O. K. Pashaev, C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation in cold plasma physics. Application of Bäcklund-Darboux transformations and superposition principles, J. Plasma Physics, 2007, 73, 257-72.

    Google Scholar

    [12] J. B. Li, Singular Nonlinear Traveling Wave Equations:Bifurcations and Exact Solutions, Science, Beijing, 2013.

    Google Scholar

    [13] J. B. Li, Exact solution and Bifurcations in Invariant Manifolds for a Nonic Derivative Nonlinear Schrödinger equation, Int. J. Bifurcation and Chaos, 2016, 26, 1650136-1-1650136-32.

    Google Scholar

    [14] J. B. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065.

    Google Scholar

    [15] J. B. Li and H.H. Dia, On the study of singular nonlinear traveling wave equations:Dynamical system approach, Science press, Beijing, 2007.

    Google Scholar

    [16] M. Li, B. Tian, W. J. Liu, H. Q. Zhang and P. Wang, Dark and antidark solitons in the modified nonlinear Schröinger equation accounting for the self-steepening effect, Phys. Rev. E, 2010, 81(4), 046606-1-046606-8.

    Google Scholar

    [17] S. K. Liu, Z. T. Fu, S. D. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phy. Lett. A, 2001, 285(5-6), 69-74.

    Google Scholar

    [18] X. L ü and M. Peng, Painlev-integrability and explicit solutions of the general two-coupled nonlinear Schröinger system in the optical fiber communications, Nonlinear Dyn., 2013, 73, 405-410.

    Google Scholar

    [19] M. Marklund, P. K. Shukla and L. Stenflo, Ultrashort solitons and kinetic effects in nonlinear metamaterials, Phys. Rev. E, 2006, 73(3), 037601-1-037601-4.

    Google Scholar

    [20] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, NewYork, 1993.

    Google Scholar

    [21] O. K. Pashaev and J. Lee, Resonance solitons as black holes in Madelung fluid Mod. Phys. Lett. A, 2002, 17(24), 1601-1619.

    Google Scholar

    [22] J. R. Ray, Nonlinear superposition law for generalised Ermakov systems, Phys. Lett. A, 1980, 78, 4-6.

    Google Scholar

    [23] C. Rogers, B. Malomed and K. Chow, Invariants in a resonant nonlinear Schrödinger model, J. Phys. A:Math. Theor., 2012, 45:155205.

    Google Scholar

    [24] C. Rogers, B. Malomed, H. Li and K. Chow, Propagating wave patterns in a derivative nonlinear Schrödinger system with quintic nonlinearity, J. Phys. Soc. Jpn., 2012, 81, 094005-1-094005-8.

    Google Scholar

    [25] C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation via an integrable capillarity model, Ⅱ Nuovo Cimento B, 1999, 114(12), 1409-1412.

    Google Scholar

    [26] C. Rogers and W. K. Schief, Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory, Cambridge University Press, New York, 2002.

    Google Scholar

    [27] C. Rogers, L. P. Yip and K. W. Chow, A resonant Davey-Stewartson capillarity model system. Soliton generation, Int. J. Nonlinear Sci. Num. Simulation, 2009, 10, 397-405.

    Google Scholar

    [28] D. L. Temesgen and J. B. Li, Bifurcations and exact travelling wave solutions of a generalized derivative of nonlinear Schrödinger equation, Nonlinear Dyn, 2016, 85, 1031-1037.

    Google Scholar

    [29] E. Wamba, T. B. Ekogo, J. Atangana and T. C. Kofane, Effects of threebody interactions in the parametric and modulational instabilities of Bose-Einstein condensates Phys. Lett. A, 2011, 375, 4288-4295.

    Google Scholar

Article Metrics

Article views(2156) PDF downloads(891) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint