[1]
|
M. J. Ablowitz and P. A. Clarkson, Soliton, nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, New York, 1991.
Google Scholar
|
[2]
|
G. P. Agrawal and Y. S. Kivshar, Optical Solitons:From Fibers to Photonic Crystals, Academic Press, San Diego, 2003.
Google Scholar
|
[3]
|
P. F. Byrd and M.D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971.
Google Scholar
|
[4]
|
B. M. Caradoc-Davies, R. Ballagh and J. K. Burnett, Coherent dynamics of vortex formation in trapped Bose-Einstein condensates, Phys. Rev Lett., 1999, 83(5), 895-898.
Google Scholar
|
[5]
|
K. Chow and C. Rogers, Localized and periodic wave patterns for a nonic nonlinear Schrödinger equation, Phy. Lett. A, 2013, 377, 2546-2550.
Google Scholar
|
[6]
|
F. Dalfovo, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 1999, 71(3), 463-512.
Google Scholar
|
[7]
|
J. Guckenheimer and P.J. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983.
Google Scholar
|
[8]
|
S. H. Han and Q. Park, Effect of self-steepening on optical solitons in a continuous wave background, Phys. Rev. E, 2011, 83(6), 066601-1-066601-6.
Google Scholar
|
[9]
|
J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Soliton and Fractals, 2005, 26(3), 695-700.
Google Scholar
|
[10]
|
J. Q. Hu, An algebraic method exactly solving two high-dimensional nonlinear evolution equations, Chaos, Solitons and Fractals, 2005, 23(2), 391-398.
Google Scholar
|
[11]
|
J. Lee, O. K. Pashaev, C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation in cold plasma physics. Application of Bäcklund-Darboux transformations and superposition principles, J. Plasma Physics, 2007, 73, 257-72.
Google Scholar
|
[12]
|
J. B. Li, Singular Nonlinear Traveling Wave Equations:Bifurcations and Exact Solutions, Science, Beijing, 2013.
Google Scholar
|
[13]
|
J. B. Li, Exact solution and Bifurcations in Invariant Manifolds for a Nonic Derivative Nonlinear Schrödinger equation, Int. J. Bifurcation and Chaos, 2016, 26, 1650136-1-1650136-32.
Google Scholar
|
[14]
|
J. B. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065.
Google Scholar
|
[15]
|
J. B. Li and H.H. Dia, On the study of singular nonlinear traveling wave equations:Dynamical system approach, Science press, Beijing, 2007.
Google Scholar
|
[16]
|
M. Li, B. Tian, W. J. Liu, H. Q. Zhang and P. Wang, Dark and antidark solitons in the modified nonlinear Schröinger equation accounting for the self-steepening effect, Phys. Rev. E, 2010, 81(4), 046606-1-046606-8.
Google Scholar
|
[17]
|
S. K. Liu, Z. T. Fu, S. D. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phy. Lett. A, 2001, 285(5-6), 69-74.
Google Scholar
|
[18]
|
X. L ü and M. Peng, Painlev-integrability and explicit solutions of the general two-coupled nonlinear Schröinger system in the optical fiber communications, Nonlinear Dyn., 2013, 73, 405-410.
Google Scholar
|
[19]
|
M. Marklund, P. K. Shukla and L. Stenflo, Ultrashort solitons and kinetic effects in nonlinear metamaterials, Phys. Rev. E, 2006, 73(3), 037601-1-037601-4.
Google Scholar
|
[20]
|
P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, NewYork, 1993.
Google Scholar
|
[21]
|
O. K. Pashaev and J. Lee, Resonance solitons as black holes in Madelung fluid Mod. Phys. Lett. A, 2002, 17(24), 1601-1619.
Google Scholar
|
[22]
|
J. R. Ray, Nonlinear superposition law for generalised Ermakov systems, Phys. Lett. A, 1980, 78, 4-6.
Google Scholar
|
[23]
|
C. Rogers, B. Malomed and K. Chow, Invariants in a resonant nonlinear Schrödinger model, J. Phys. A:Math. Theor., 2012, 45:155205.
Google Scholar
|
[24]
|
C. Rogers, B. Malomed, H. Li and K. Chow, Propagating wave patterns in a derivative nonlinear Schrödinger system with quintic nonlinearity, J. Phys. Soc. Jpn., 2012, 81, 094005-1-094005-8.
Google Scholar
|
[25]
|
C. Rogers and W. K. Schief, The resonant nonlinear Schrödinger equation via an integrable capillarity model, Ⅱ Nuovo Cimento B, 1999, 114(12), 1409-1412.
Google Scholar
|
[26]
|
C. Rogers and W. K. Schief, Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory, Cambridge University Press, New York, 2002.
Google Scholar
|
[27]
|
C. Rogers, L. P. Yip and K. W. Chow, A resonant Davey-Stewartson capillarity model system. Soliton generation, Int. J. Nonlinear Sci. Num. Simulation, 2009, 10, 397-405.
Google Scholar
|
[28]
|
D. L. Temesgen and J. B. Li, Bifurcations and exact travelling wave solutions of a generalized derivative of nonlinear Schrödinger equation, Nonlinear Dyn, 2016, 85, 1031-1037.
Google Scholar
|
[29]
|
E. Wamba, T. B. Ekogo, J. Atangana and T. C. Kofane, Effects of threebody interactions in the parametric and modulational instabilities of Bose-Einstein condensates Phys. Lett. A, 2011, 375, 4288-4295.
Google Scholar
|