[1]
|
M. J. Ablowitz, R. G. Halburd and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity, 2000, 13, 889-905.
Google Scholar
|
[2]
|
A. M. Amkeh, E. Camouzis, and G. Ladas, On the dynamics of a rational difference equation part I, Int J Difference Equ, 2008, 3, 1-35.
Google Scholar
|
[3]
|
A. Andruch-Sobilo and M. Migda, On the rational recursive sequence xn+1=(axn-1)/(b+cxnxn-1), Tatra Mt Math Publ, 2009, 43, 1-9.
Google Scholar
|
[4]
|
I. Bajo and E. Liz, 'Global behaviour of a second-order nonlinear difference equation', J Difference Equ Aappl, 2011, 17(10), 1471-1486.
Google Scholar
|
[5]
|
S. B. Bank, G. Gundersen and I. Laine, Meromorphic solutions of the Riccati differential equation, Ann Acad Sci Fenn Math, 1981, 6(2), 369-398.
Google Scholar
|
[6]
|
Z. X. Chen, On growth, zeros and poles of meromorphic functions of linear and nonlinear difference equations, Sci China Math, 2011, 54, 2123-2133.
Google Scholar
|
[7]
|
Z. X. Chen, Complex oscillation of meromorphic solutions for the Pielou logistic equation, J Difference Equ Appl, 2013, 19(11), 1795-1806.
Google Scholar
|
[8]
|
Z. X. Chen, Z. Huang and R. Zhang, On difference equations relationg to Gamma function, Acta Math Sci, 2011, 31B, 1281-1294.
Google Scholar
|
[9]
|
Z. X. Chen and K. H. Shon, Some results on Riccati equations, Acta Math Sin (Engl. Ser.), 2011, 27, 1091-1100.
Google Scholar
|
[10]
|
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16, 105-129.
Google Scholar
|
[11]
|
C. Cinar, On the positive solutions of the difference equation xn+1=(axn-1)/(1+bxnxn-1), Appl. Math. Comput., 2004, 156, 587-590.
Google Scholar
|
[12]
|
R. G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314, 477-487.
Google Scholar
|
[13]
|
R. G. Halburd and R. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc Lond Math Soc, 2007, 94(3), 443-474.
Google Scholar
|
[14]
|
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
Google Scholar
|
[15]
|
Z. Huang and Z. X. Chen, A clunie lemma for difference and q-difference polynomials, Bull. Aust. Math. Soc., 2010, 81, 23-32.
Google Scholar
|
[16]
|
K. Ishizaki, On difference Riccati equations and second order linear difference equations, Aequationes Math, 2011, 81, 185-198.
Google Scholar
|
[17]
|
Y. Y. Jiang and Z. X. Chen, Value distribution of meromorphic solutions to some difference equations, J South China Normal Univ Natur Sci Ed, 2013, 45(1), 19-23.
Google Scholar
|
[18]
|
Y. Y. Jiang and Z. X. Chen, Fixed points of meromorphic solutions for difference Riccati equation, Taiwanese J Math, 2013, 17(4), 1413-1423.
Google Scholar
|
[19]
|
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
Google Scholar
|
[20]
|
I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polymials, Proc Lond Math Soc, 2007, 76(3), 556-566.
Google Scholar
|
[21]
|
M. Suzuki, On some Difference equations in economic model, Mathematica Japonica, 1996, 43, 129-134.
Google Scholar
|
[22]
|
M. Suzuki, Difference Equation for A Population Model, Discrete Dynamics in Nature and Society, 2000, 5, 9-18.
Google Scholar
|
[23]
|
J. M. Whittaker, Interpolatory Function Theory, Cambridge Univ Press, Cambridge, 1935.
Google Scholar
|
[24]
|
R. R. Zhang and Z. X. Chen, On meromorphic solutions of Riccati and linear difference equations, Acta Math Sci, 2013, 33B(5), 1243-1254.
Google Scholar
|