2018 Volume 8 Issue 1
Article Contents

A. D. Abin Rejeesh, S. Udhayakumar, T. V. S. Sekhar, R. Sivakumar. DEVELOPMENT OF A HIGH ORDER DISCRETIZATION SCHEME FOR SOLVING FULLY NONLINEAR MAGNETOHYDRODYNAMIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 42-65. doi: 10.11948/2018.42
Citation: A. D. Abin Rejeesh, S. Udhayakumar, T. V. S. Sekhar, R. Sivakumar. DEVELOPMENT OF A HIGH ORDER DISCRETIZATION SCHEME FOR SOLVING FULLY NONLINEAR MAGNETOHYDRODYNAMIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 42-65. doi: 10.11948/2018.42

DEVELOPMENT OF A HIGH ORDER DISCRETIZATION SCHEME FOR SOLVING FULLY NONLINEAR MAGNETOHYDRODYNAMIC EQUATIONS

  • We have developed fully fourth order accurate compact finite difference discretization scheme for the Navier-Stokes equations coupled with Maxwell's equations. The implementation is done in cylindrical polar geometry. Due to the full-MHD modeling of physical flow, the modeled equations are fully nonlinear coupled hydrodynamic equations which are again coupled with Maxwells equations. In our computations, we have accounted for the induced magnetic field in the flow of an electrically conducting fluid in an external magnetic field. The code is tested against available experimental and theoretical data where applicable. It is observed that a smaller grid of 64×64 is sufficient for weakly nonlinear problems and higher grids up to 512×512 are needed as the degree of nonlinearities grow in the modeled equation. In the absence of magnetic field, a discontinuity of total drag coefficient and separation length is noted for Re=73 which is in agreement with literature. When the magnetic Reynolds number Rm<1 separation length decreases linearly with strength of magnetic field on a log-log scale whereas if Rm>1, it decreases nonlinearly, at a much faster rate. Thermal boundary layer thickness decreases as the strength of magnetic field increases and it forces the thermal convection to take place in a laminar structure as observed from thermal contour lines. Finally, using divided differences, we establish that the accuracy of the proposed numerical scheme is in fact fourth order.
    MSC: 65N06;74S20;76R05;76W05;35J66
  • 加载中
  • [1] D. N. D. G. Allen and R. V. Southwell, Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 1955, 8(1-2), 129-145. https://doi.org/10.1093/qjmam/8.2.129

    Google Scholar

    [2] A. Acrivos, D. D. Snowden, A. S. Grove and E. E. Petersen, The steady separated flow past a circular cylinder at large Reynolds number, J. Fluid Mech., 1965, 21(4), 737-760. https://doi.org/10.1017/S0022112065000459

    Google Scholar

    [3] A. Acrivos, L. G. Leal, D. D. Snowden and F. Pan, Further experiments on steady separated flows past bluff objects, J. Fluid. Mech., 1968, 34(1), 25-48. https://doi.org/10.1017/S0022112068001758

    Google Scholar

    [4] G. K. Batchelor, A proposal concerning laminar wakes behind bluff bodies at large Reynolds numbers, J. Fluid Mech., 1956, 1(4), 388-398. https://doi. org/10.1017/S0022112056000238

    Google Scholar

    [5] S. W. Churchill and M. Bernstein, A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow, J. Heat Transf., 1977, 99(2), 300-306. https://doi.org/10.1115/1.3450685

    Google Scholar

    [6] K. S. Chang and J. Y. Sa, The effect of buoyancy on vortex shedding in the near wake of a circular cylinder, J. Fluid Mech., 1990, 220, 253-266. https://doi.org/10.1017/S002211209000324X

    Google Scholar

    [7] S. C. R. Dennis and G. Z. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 1970, 42(3), 471-489. https://doi.org/10.1017/S0022112070001428

    Google Scholar

    [8] S. C. R. Dennis and J. D. Hudson, Compact h4 finite-difference approximations to operators of Navier-Stokes type, J. Comp. Phys., 1989, 85(2), 390-416. https://doi.org/10.1016/0021-9991(89)90156-3

    Google Scholar

    [9] E. R. G. Eckert and E. Soehngen, Distribution of heat transfer coefficients around circular cylinder in cross flow at Reynolds numbers 20 to 500, Trans. ASME, 1952, 74, 343-347.

    Google Scholar

    [10] B. Fornberg, A numerical study of steady flow past a circular cylinder, J. Fluid Mech., 1980, 98(4), 819-855. https://doi.org/10.1017/S0022112080000419

    Google Scholar

    [11] B. Fornberg, Steady viscous flow past a circular cylinder up to Reynolds number 600, J. Comp. Phys., 1985, 61(2), 297-320. https://doi.org/10.1016/0021-9991(85)90089-0

    Google Scholar

    [12] R. Golani and A. K. Dhiman, Fluid flow and heat transfer across a circular cylinder in the unsteady flow regime, The Int. J. Engg. Sci., 2014, 3(3), 8-19.

    Google Scholar

    [13] V. A. Gushchin and V. V. Shchennikov, A numerical method of solving the Navier-Stokes equations, USSR Compt. Mathematics & Mathematical Phys., 1974, 14(2), 242-250. https://doi.org/10.1016/0041-5553(74)90061-5

    Google Scholar

    [14] F. A. Goldsworthy, Magnetohydrodynamic flow of a perfectly conducting, viscous fluid, J. Fluid Mech., 1961, 11(4), 519-528. https://doi.org/10.1017/S0022112061000706

    Google Scholar

    [15] D. G. E. Grigoriadis, I. E. Sarris and S. C. Kassinos, MHD flow past a circular cylinder using the immersed boundary method, Computers & Fluids, 2010, 39(2), 345-358. https://doi.org/10.1016/j.compfluid.2009.09.012

    Google Scholar

    [16] P. C. Jain and B. S. Goel, A numerical study of unsteady laminar forced convection from a circular cylinder, Trans. ASME J. Heat Transf., 1976, 98(2), 303-307. https://doi.org/10.1115/1.3450537

    Google Scholar

    [17] G. Juncu, A numerical study of momentum and forced convection heat transfer around two tandem circular cylinders at low Reynolds numbers. Part I:Momentum transfer, Int. J. Heat & Mass Transf., 2007, 50(19-20), 3788-3798. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.020

    Google Scholar

    [18] J. Josserand, P. Marty and A. Alemany, Pressure and drag measurements on a cylinder in a liquid metal flow with an aligned magnetic field, Fluid Dyn. Res., 1993, 11(3), 107-117. https://doi.org/10.1016/0169-5983(93)90010-8

    Google Scholar

    [19] Y. T. Krishne Gowda, P. A. Aswatha Narayana and K. N. Seetharamu, Numerical investigation of mixed convection heat transfer past an in-line bundle of cylinders, J. Heat & Mass Transf., 1996, 31(5), 347-352. https://doi.org/10.1007/BF02184049

    Google Scholar

    [20] V. N. Kurdyumov and E. Fernandez, Heat transfer from a circular cylinder at low Reynolds number, ASME J. Heat Transf., 1998, 120(1), 72-75. https://dx.doi.org/10.1115/1.2830067

    Google Scholar

    [21] B. Kumar and S. Mittal, Prediction of critical Reynolds number for the flow past a circular cylinder, Comp. Methods Appl. Mech. Engg., 2006, 19(44-47), 6046-6058. https://doi.org/10.1016/j.cma.2005.10.009

    Google Scholar

    [22] M. Kawaguti and P. Jain, Numerical study of a viscous flow past a circular cylinder, J. Phys. Soc. Japan, 1966, 21, 2055-2062. https://doi.org/10. 1143/JPSJ.21.2055

    Google Scholar

    [23] M. Kawaguti, Numerical solution of the Navier-Stokes equations for the flow around a circular cylinder at Reynolds number 40, J. Phys. Soc. Japan, 1953, 8, 747-757. https://doi.org/10.1143/JPSJ.8.747

    Google Scholar

    [24] T. Leweke, M. Provansal, G. D. Miller and C. H. K. Williamson, Cell formation in cylinder wakes at low Reynolds numbers, Phys. Rev. Lett., 1997, 78(7), 1259-1262. https://doi.org/10.1103/PhysRevLett.78.1259

    Google Scholar

    [25] J. Lahjomri, P. Caperan and A. Alemany, The cylinder wake in a magnetic field aligned with the velocity, J. Fluid Mech., 1993, 253, 421-448. https://doi.org/10.1017/S0022112093001855

    Google Scholar

    [26] G. Mutschke, V. Shatrov and G. Gerbeth, Cylinder wake control by magnetic fields in liquid metal flows, Exp. Thermal Fluid Sci., 1998, 16(1-2), 92-99. https://doi.org/10.1016/S0894-1777(97)10007-3

    Google Scholar

    [27] N. Mahir and Z. Altac, Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements, Int. J. Heat & Fluid Flow, 2008, 29(5), 1309-1318. https://doi.org/10.1016/j.ijheatfluidflow.2008.05.001

    Google Scholar

    [28] T. Maxworthy, Experimental studies in magneto-fluid dynamics:flow over a sphere with a cylindrical after body, J. Fluid Mech., 1969, 35(2), 411-416. https://doi.org/10.1017/S0022112069001194

    Google Scholar

    [29] H. Nakamura and T. Igarashi, Varation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30000, Int. J. Heat & Mass Transf., 2004, 47(23), 5169-5173. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.034

    Google Scholar

    [30] S. B. Paramane and A. Sharma, Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime, Int. J. Heat & Mass Transf., 2009, 52(13-14), 3205-3216. https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.031

    Google Scholar

    [31] B. N. Rajani, A. Kandasamy and S. Majumdar, Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Modelling, 2009, 33(3), 1228-1247. https://doi.org/10.1016/j.apm.2008.01.017

    Google Scholar

    [32] T. V. S. Sekhar, R. Sivakumar and T. V. R. Ravi Kumar, Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder, Int.J. Numer. Methods Fluids., 2009, 59(12), 1351-1368. https://doi.org/10.1002/fld.1870

    Google Scholar

    [33] T. V. S. Sekhar, R. Sivakumar, H. Kumar and T. V. R. Ravikumar, Effect of aligned magnetic field on the steady viscous flow past a circular cylinder, Applied Math. Modelling, 2007, 31(1), 130-139. https://doi.org/10.1016/j.apm.2005.08.011

    Google Scholar

    [34] J. S. Son and T. J. Hanratty, Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500, J. Fluid Mech., 1969, 35(2), 369-386. https://doi.org/10.1017/S0022112069001169

    Google Scholar

    [35] S. Taneda, Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers, J. Phys. Soc. Japan, 1956, 11(3), 302-307. https://doi.org/10.1143/JPSJ.11.302

    Google Scholar

    [36] D. C. Thoman and A. A. Szewczyk, Numerical solutions of time dependent two dimensional flow of a viscous, incompressible fluid over stationary and rotating cylinders, Heat Transf. Fluid Mech. Lab., Dept. Mech. Engg. Univ. Notre Dame. Tech. Rep, 1966, 66, 1-14.

    Google Scholar

    [37] N. Uda, A. Miyazawa, S. Inoue, N. Yamaoka, H. Horiike and K. Miyazaki, Forced convection heat trnasfer and temperature fluctuations of Lithium under transverse magnetic fields, J. Nuc. Sci. Tech., 2001, 38(11), 936-943. https://dx.doi.org/10.1080/18811248.2001.9715120

    Google Scholar

    [38] C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401

    Google Scholar

    [39] C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401

    Google Scholar

    [40] G. Yonas, Measurements of drag in a conducting fluid with an aligned magnetic field and large interaction parameter, J. Fluid Mech., 1967, 30(4), 813-821. https://doi.org/10.1017/S002211206700179X

    Google Scholar

    [41] H. S. Yoon, H. H. Chun, M. Y. Ha and H. G. Lee, A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field, Int. J. Heat & Mass Transf., 2004, 47(19-20), 4075-4087. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.015

    Google Scholar

Article Metrics

Article views(2400) PDF downloads(1413) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint