[1]
|
D. N. D. G. Allen and R. V. Southwell, Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 1955, 8(1-2), 129-145. https://doi.org/10.1093/qjmam/8.2.129
Google Scholar
|
[2]
|
A. Acrivos, D. D. Snowden, A. S. Grove and E. E. Petersen, The steady separated flow past a circular cylinder at large Reynolds number, J. Fluid Mech., 1965, 21(4), 737-760. https://doi.org/10.1017/S0022112065000459
Google Scholar
|
[3]
|
A. Acrivos, L. G. Leal, D. D. Snowden and F. Pan, Further experiments on steady separated flows past bluff objects, J. Fluid. Mech., 1968, 34(1), 25-48. https://doi.org/10.1017/S0022112068001758
Google Scholar
|
[4]
|
G. K. Batchelor, A proposal concerning laminar wakes behind bluff bodies at large Reynolds numbers, J. Fluid Mech., 1956, 1(4), 388-398. https://doi. org/10.1017/S0022112056000238
Google Scholar
|
[5]
|
S. W. Churchill and M. Bernstein, A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow, J. Heat Transf., 1977, 99(2), 300-306. https://doi.org/10.1115/1.3450685
Google Scholar
|
[6]
|
K. S. Chang and J. Y. Sa, The effect of buoyancy on vortex shedding in the near wake of a circular cylinder, J. Fluid Mech., 1990, 220, 253-266. https://doi.org/10.1017/S002211209000324X
Google Scholar
|
[7]
|
S. C. R. Dennis and G. Z. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 1970, 42(3), 471-489. https://doi.org/10.1017/S0022112070001428
Google Scholar
|
[8]
|
S. C. R. Dennis and J. D. Hudson, Compact h4 finite-difference approximations to operators of Navier-Stokes type, J. Comp. Phys., 1989, 85(2), 390-416. https://doi.org/10.1016/0021-9991(89)90156-3
Google Scholar
|
[9]
|
E. R. G. Eckert and E. Soehngen, Distribution of heat transfer coefficients around circular cylinder in cross flow at Reynolds numbers 20 to 500, Trans. ASME, 1952, 74, 343-347.
Google Scholar
|
[10]
|
B. Fornberg, A numerical study of steady flow past a circular cylinder, J. Fluid Mech., 1980, 98(4), 819-855. https://doi.org/10.1017/S0022112080000419
Google Scholar
|
[11]
|
B. Fornberg, Steady viscous flow past a circular cylinder up to Reynolds number 600, J. Comp. Phys., 1985, 61(2), 297-320. https://doi.org/10.1016/0021-9991(85)90089-0
Google Scholar
|
[12]
|
R. Golani and A. K. Dhiman, Fluid flow and heat transfer across a circular cylinder in the unsteady flow regime, The Int. J. Engg. Sci., 2014, 3(3), 8-19.
Google Scholar
|
[13]
|
V. A. Gushchin and V. V. Shchennikov, A numerical method of solving the Navier-Stokes equations, USSR Compt. Mathematics & Mathematical Phys., 1974, 14(2), 242-250. https://doi.org/10.1016/0041-5553(74)90061-5
Google Scholar
|
[14]
|
F. A. Goldsworthy, Magnetohydrodynamic flow of a perfectly conducting, viscous fluid, J. Fluid Mech., 1961, 11(4), 519-528. https://doi.org/10.1017/S0022112061000706
Google Scholar
|
[15]
|
D. G. E. Grigoriadis, I. E. Sarris and S. C. Kassinos, MHD flow past a circular cylinder using the immersed boundary method, Computers & Fluids, 2010, 39(2), 345-358. https://doi.org/10.1016/j.compfluid.2009.09.012
Google Scholar
|
[16]
|
P. C. Jain and B. S. Goel, A numerical study of unsteady laminar forced convection from a circular cylinder, Trans. ASME J. Heat Transf., 1976, 98(2), 303-307. https://doi.org/10.1115/1.3450537
Google Scholar
|
[17]
|
G. Juncu, A numerical study of momentum and forced convection heat transfer around two tandem circular cylinders at low Reynolds numbers. Part I:Momentum transfer, Int. J. Heat & Mass Transf., 2007, 50(19-20), 3788-3798. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.020
Google Scholar
|
[18]
|
J. Josserand, P. Marty and A. Alemany, Pressure and drag measurements on a cylinder in a liquid metal flow with an aligned magnetic field, Fluid Dyn. Res., 1993, 11(3), 107-117. https://doi.org/10.1016/0169-5983(93)90010-8
Google Scholar
|
[19]
|
Y. T. Krishne Gowda, P. A. Aswatha Narayana and K. N. Seetharamu, Numerical investigation of mixed convection heat transfer past an in-line bundle of cylinders, J. Heat & Mass Transf., 1996, 31(5), 347-352. https://doi.org/10.1007/BF02184049
Google Scholar
|
[20]
|
V. N. Kurdyumov and E. Fernandez, Heat transfer from a circular cylinder at low Reynolds number, ASME J. Heat Transf., 1998, 120(1), 72-75. https://dx.doi.org/10.1115/1.2830067
Google Scholar
|
[21]
|
B. Kumar and S. Mittal, Prediction of critical Reynolds number for the flow past a circular cylinder, Comp. Methods Appl. Mech. Engg., 2006, 19(44-47), 6046-6058. https://doi.org/10.1016/j.cma.2005.10.009
Google Scholar
|
[22]
|
M. Kawaguti and P. Jain, Numerical study of a viscous flow past a circular cylinder, J. Phys. Soc. Japan, 1966, 21, 2055-2062. https://doi.org/10. 1143/JPSJ.21.2055
Google Scholar
|
[23]
|
M. Kawaguti, Numerical solution of the Navier-Stokes equations for the flow around a circular cylinder at Reynolds number 40, J. Phys. Soc. Japan, 1953, 8, 747-757. https://doi.org/10.1143/JPSJ.8.747
Google Scholar
|
[24]
|
T. Leweke, M. Provansal, G. D. Miller and C. H. K. Williamson, Cell formation in cylinder wakes at low Reynolds numbers, Phys. Rev. Lett., 1997, 78(7), 1259-1262. https://doi.org/10.1103/PhysRevLett.78.1259
Google Scholar
|
[25]
|
J. Lahjomri, P. Caperan and A. Alemany, The cylinder wake in a magnetic field aligned with the velocity, J. Fluid Mech., 1993, 253, 421-448. https://doi.org/10.1017/S0022112093001855
Google Scholar
|
[26]
|
G. Mutschke, V. Shatrov and G. Gerbeth, Cylinder wake control by magnetic fields in liquid metal flows, Exp. Thermal Fluid Sci., 1998, 16(1-2), 92-99. https://doi.org/10.1016/S0894-1777(97)10007-3
Google Scholar
|
[27]
|
N. Mahir and Z. Altac, Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements, Int. J. Heat & Fluid Flow, 2008, 29(5), 1309-1318. https://doi.org/10.1016/j.ijheatfluidflow.2008.05.001
Google Scholar
|
[28]
|
T. Maxworthy, Experimental studies in magneto-fluid dynamics:flow over a sphere with a cylindrical after body, J. Fluid Mech., 1969, 35(2), 411-416. https://doi.org/10.1017/S0022112069001194
Google Scholar
|
[29]
|
H. Nakamura and T. Igarashi, Varation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30000, Int. J. Heat & Mass Transf., 2004, 47(23), 5169-5173. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.034
Google Scholar
|
[30]
|
S. B. Paramane and A. Sharma, Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime, Int. J. Heat & Mass Transf., 2009, 52(13-14), 3205-3216. https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.031
Google Scholar
|
[31]
|
B. N. Rajani, A. Kandasamy and S. Majumdar, Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Modelling, 2009, 33(3), 1228-1247. https://doi.org/10.1016/j.apm.2008.01.017
Google Scholar
|
[32]
|
T. V. S. Sekhar, R. Sivakumar and T. V. R. Ravi Kumar, Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder, Int.J. Numer. Methods Fluids., 2009, 59(12), 1351-1368. https://doi.org/10.1002/fld.1870
Google Scholar
|
[33]
|
T. V. S. Sekhar, R. Sivakumar, H. Kumar and T. V. R. Ravikumar, Effect of aligned magnetic field on the steady viscous flow past a circular cylinder, Applied Math. Modelling, 2007, 31(1), 130-139. https://doi.org/10.1016/j.apm.2005.08.011
Google Scholar
|
[34]
|
J. S. Son and T. J. Hanratty, Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500, J. Fluid Mech., 1969, 35(2), 369-386. https://doi.org/10.1017/S0022112069001169
Google Scholar
|
[35]
|
S. Taneda, Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers, J. Phys. Soc. Japan, 1956, 11(3), 302-307. https://doi.org/10.1143/JPSJ.11.302
Google Scholar
|
[36]
|
D. C. Thoman and A. A. Szewczyk, Numerical solutions of time dependent two dimensional flow of a viscous, incompressible fluid over stationary and rotating cylinders, Heat Transf. Fluid Mech. Lab., Dept. Mech. Engg. Univ. Notre Dame. Tech. Rep, 1966, 66, 1-14.
Google Scholar
|
[37]
|
N. Uda, A. Miyazawa, S. Inoue, N. Yamaoka, H. Horiike and K. Miyazaki, Forced convection heat trnasfer and temperature fluctuations of Lithium under transverse magnetic fields, J. Nuc. Sci. Tech., 2001, 38(11), 936-943. https://dx.doi.org/10.1080/18811248.2001.9715120
Google Scholar
|
[38]
|
C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401
Google Scholar
|
[39]
|
C. H. K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 1996, 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401
Google Scholar
|
[40]
|
G. Yonas, Measurements of drag in a conducting fluid with an aligned magnetic field and large interaction parameter, J. Fluid Mech., 1967, 30(4), 813-821. https://doi.org/10.1017/S002211206700179X
Google Scholar
|
[41]
|
H. S. Yoon, H. H. Chun, M. Y. Ha and H. G. Lee, A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field, Int. J. Heat & Mass Transf., 2004, 47(19-20), 4075-4087. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.015
Google Scholar
|