[1]
|
C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase space analogy of an elastic strut, European. J. Appl. Math., 1991, 3, 97-114.
Google Scholar
|
[2]
|
F. P. Bretherton, Resonant interaction between waves:the case of discrete oscillations, J. Fluid Mech., 1964, 20, 457-479.
Google Scholar
|
[3]
|
B. Buffoni, Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational method, Nonlinear Anal., 1996, 26, 443-462.
Google Scholar
|
[4]
|
B. Buffoni, M. Groves and J. F. Toland, A plethora of capillary gravity waves with near-critical Bond and Froude numbers, Philos. Trans. Roy. Soc. London. Ser. A, 1996, 354, 575-607.
Google Scholar
|
[5]
|
A. V. Buryak and Y. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 1995, 197, 407-412.
Google Scholar
|
[6]
|
G. Chapiro, L. F. O. Faria and A. D. Maldonado, On the existence of solutions for a class of fourth order differential equations, J. Math. Anal. Appl., 2015, 427, 126-139.
Google Scholar
|
[7]
|
P. Coullet, C. Elphick and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett., 1987, 58, 431-434.
Google Scholar
|
[8]
|
G. T. Dee and W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett, 1988, 60, 2641-2644.
Google Scholar
|
[9]
|
J. Lega, J. Molonev and A. Newell, Swift-Hohenberg for lasers, Phys. Rev. Lett, 1994, 73, 2978-2981.
Google Scholar
|
[10]
|
F. Li, J. T. Sun, G. F. Lu and C. J. Lv, Infinitely many homoclinic solutions for a nonperiodic fourth-order differential equation without (AR)-condition, Appl. Math. Comput., 2014, 241, 36-41.
Google Scholar
|
[11]
|
T. X. Li, J. T. Sun and T. F. Wu, Existence of homoclinic solutions for a fourth order differential equation with a parameter, Appl. Math. Comput., 2015, 251, 499-506.
Google Scholar
|
[12]
|
C. Y. Li, Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity, J. Appl. Math. Comput., 2008, 27, 107-116.
Google Scholar
|
[13]
|
C. Y. Li, Remarks on homoclinic solutions for semilinear fourth-order differential equations without periodicity, Appl. Math. J. Chinese Univ., 2009, 24, 49-55.
Google Scholar
|
[14]
|
L. A. Peletier and W. C. Troy, Spatial Patterns:Higher Order Models in Physics and Mechnics, Birkhäuser, Boston, 2001.
Google Scholar
|
[15]
|
P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
Google Scholar
|
[16]
|
A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, Nonlinear Anal., 1997, 30, 4849-4857.
Google Scholar
|
[17]
|
J. T. Sun and T. F. Wu, Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation, J. Math. Anal. Appl., 2014, 413, 622-632.
Google Scholar
|
[18]
|
J. T. Sun, T. F. Wu and F. Li, Concentration of homoclinic solutions for some fourth-order equations with sublinear indefinite nonlinearities, Appl. Math. Lett., 2014, 38, 1-6.
Google Scholar
|
[19]
|
S. Tersian and J. Chaparova, Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations, J. Math. Anal. Appl., 2001, 260, 490-506.
Google Scholar
|
[20]
|
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
Google Scholar
|
[21]
|
L. Yang, Infinitely many homoclinic solutions for nonperiodic fourth order differential equations with general potentials, Abst. Appl. Anal., 2014, Art. ID 435125, 7 pp.
Google Scholar
|
[22]
|
Z. H. Zhang and R. Yuan, Homoclinic solutions for a nonperiodic fourth order differential equations without coercive conditions, Appl. Math. Comput., 2015, 250, 280-286.
Google Scholar
|
[23]
|
W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 2001, 104, 343-358.
Google Scholar
|