[1]
|
M. T. Chu and G. H. Golub, Inverse Eigenvalue Problems:Theory, Algorithms, and Applications, Oxford University Press, USA, 2005.
Google Scholar
|
[2]
|
M. T. Chu, F. Diele and S. Ragni, On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from their three largest eigenvalues, Inverse Probl., 2005, 21(6), 1879-1894.
Google Scholar
|
[3]
|
T. B. Gan and T. Z. Huang, Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 2003. DOI:10.1016/S0024-3795(03)00646-3.
Google Scholar
|
[4]
|
K. Ghanbari, A survey on inverse and generalized inverse eigenvalue problems for Jacobi matrices, Appl. Math. Comput., 2008, 195(2), 355-363.
Google Scholar
|
[5]
|
S. G. Hwang and S. S. Pyo, The inverse eigenvalue problem for symmetric doubly stochastic matrices, Linear Algebra Appl., 2004. DOI:10.1016/S0024-3795(03)00366-5.
Google Scholar
|
[6]
|
Z. Y. Liu, Y. L. Zhang, C. Ferreira and R. Ralha, On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks, Appl. Math. Comput., 2010, 216(6), 1819-1830.
Google Scholar
|
[7]
|
J. Z. Liu and Y. Q. Huang, Some properties on Schur complements of Hmatrices and diagonally dominant matrices, Linear Algebra Appl., 2004. DOI:10.1016/j.laa.2004.04.012.
Google Scholar
|
[8]
|
A. M. Nazari and F. Sherafat, On the inverse eigenvalue problem for nonnegative matrices of order two to five, Linear Algebra Appl., 2012, 436(7), 1771-1790.
Google Scholar
|
[9]
|
J. Peng, X. Y. Hu and L. Zhang, A kind of inverse eigenvalue problems of Jacobi matrix, Appl. Math. Comput., 2006, 175(2), 1543-1555.
Google Scholar
|
[10]
|
P. Pango and B. Champagne, On the efficient use of Givens rotations in SVDbased subspace tracking algorithms, Signal Processing, 1999, 74(3), 253-277.
Google Scholar
|
[11]
|
W. Rudin, Principles of mathematical analysis, McGraw-Hill Education, USA, 1976.
Google Scholar
|
[12]
|
J. J. Rotman, Advanced Modern Algebra, Prentice Hall, USA, 2003.
Google Scholar
|
[13]
|
H. Šmigoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl., 2004. DOI:10.1016/j.laa.2004.03.036.
Google Scholar
|
[14]
|
X. Q. Wu and E. X. Jiang, A new algorithm on the inverse eigenvalue problem for double dimensional Jacobi matrices, Linear Algebra Appl., 2012, 437(7), 1760-1770.
Google Scholar
|
[15]
|
X. Q. Wu, A divide and conquer algorithm on the double dimensional inverse eigenvalue problem for Jacobi matrices, Appl. Math. Comput., 2012, 219(8), 3840-3846.
Google Scholar
|
[16]
|
Y. Wei and H. Dai, An inverse eigenvalue problem for Jacobi matrix, Appl. Math. Comput., 2015. DOI:10.1016/j.amc.2014.11.101.
Google Scholar
|
[17]
|
Y. Wei, A Jacobi matrix inverse eigenvalue problem with mixed date, Linear Algebra Appl., 2013, 439(10), 2774-2783.
Google Scholar
|
[18]
|
Y. Wei, Inverse eigenvalue problem of Jacobi matrix with mixed data, Linear Algebra Appl., 2015. DOI:10.1016/j.laa.2014.09.031.
Google Scholar
|
[19]
|
R. Witu la, D. S lota and M. Kampik, Some properties of the full matrices, Appl. Math. Comput., 2012, 219(3), 1222-1231.
Google Scholar
|