2018 Volume 8 Issue 2
Article Contents

Hildebro M. Rodrigues, Jianhong Wu, Marcio Gameiro. SWITCHING SYNCHRONIZED CHAOTIC SYSTEMS APPLIED TO SECURE COMMUNICATION[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 413-426. doi: 10.11948/2018.413
Citation: Hildebro M. Rodrigues, Jianhong Wu, Marcio Gameiro. SWITCHING SYNCHRONIZED CHAOTIC SYSTEMS APPLIED TO SECURE COMMUNICATION[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 413-426. doi: 10.11948/2018.413

SWITCHING SYNCHRONIZED CHAOTIC SYSTEMS APPLIED TO SECURE COMMUNICATION

  • Fund Project:
  • The purpose of this paper is to study the behavior of the solutions of two synchronized chaotic systems when the solutions switch from the first to the second system and vice-versa. The initial condition is chosen in the first system and the solutions travels for time t ∈[0,h], where h>0. The value of the solution at time h is then chosen as the initial condition for the solution of the second system and this solution travels for time t ∈[h,2h]. The value of the solution at time 2h is then chosen as the initial value for the solution of the first system and so on. The first system is composed of two subsystems, Master and Slave that are synchronized. We present applications using the Lorenz, Chua and Chen systems. Some simulations using Matlab are presented.
    MSC: 34D06;37D45
  • 加载中
  • [1] V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Stochastic synchronization of oscillations in dissipative systems, (Russian), Izv. Vyssh. Uchebn. Zaved. Radiofiz., 1986, 29(9), 1050-1060.

    Google Scholar

    [2] V. S. Afraimovich and H. M. Rodrigues, Uniform Dissipativeness and Synchronization on Nonautonomous Equations, Equadiff95, International Conference on Differential, World Scientific, 1998, 3-17.

    Google Scholar

    [3] R. Barboza and G. Chen, On the Global Boundedness of the Chen System, International Journal of Bifurcation and Chaos, 2011, 21(11), 3373-3385.

    Google Scholar

    [4] A. N. Carvalho, T. Dlotko and H. M. Rodrigues, Upper Semicontinuity of attractors and synchronization, Journal of Mathematical Analysis and Applications, 1998, 220, 13-41.

    Google Scholar

    [5] J. Chattopadhyay, N. Pal, S. Sudip and K. Qamar, Chaos control via feeding switching in an omnivory system, Bio Systems, 2015, 138, 18-24.

    Google Scholar

    [6] Y. Chitour, G. Mazanti, M. Sigalotti, Stability of non-autonomous difference equations with applications to transport and wave propagation on networks, Netw. Heterog. Media, 2016, 11(4), 563-601.

    Google Scholar

    [7] Y. Chitour, G. Mazanti, M. Sigalotti, Persistently damped transport on a network of circles, Trans. Amer. Math. Soc., 2017, 369(6), 3841-3881.

    Google Scholar

    [8] L. O. Chua, T. Matsumoto and M. Komuro, The Double Scroll. IEEE Transactions on Circuits and Systems, 1985, CAS-32(8), 798-818.

    Google Scholar

    [9] M. Frasca, A. Buscarino, M. Branciforte, L. Fortuna and J. C. Sprott, Synchronization of two Rossler systems with switching coupling, Nonlinear Dynamics, 2017, 88(1), 673-683.

    Google Scholar

    [10] L. R. A. G. Filho, Comportamento Assintótico de sistemas não lineares discretos, Trabalho de Mestrado, Instituto de Ciências Matemáticas e de Computacão, USP, São Carlos, 2004. www.teses.usp.br/teses/disponiveis/55/55135/tde-12012005-230105/

    Google Scholar

    [11] L. V. Gambuzza, A. Buscarino, L. Fortuna and M. Frasca, Memristor-Based Adaptive Coupling for Consensus and Synchronization, IEEE Transactions on Circuits and Systems, 2015, 62(4), 1175-1184.

    Google Scholar

    [12] M. Gameiro and H. M. Rodrigues, Applications of Robust Synchronization to Communication Systems, Applicable Analysis, 2001, 79, 21-45.

    Google Scholar

    [13] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, A. M. S., 1988.

    Google Scholar

    [14] S. Kim, S. Ann and X. Liu, Delay independent stability of linear switching systems with time delay, Journal of Mathematical Analysis and Applications, 2008, 339(2), 785-801.

    Google Scholar

    [15] I. S. Labouriau and H. M. Rodrigues, Synchronization of coupled equations of Hodgkin-Huxley type, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A., 2003, 10, 463-476.

    Google Scholar

    [16] J. P. LaSalle, The Stability and Control of Discrete Processes, Applied Mathematical Sciences, vol. 62, Springer-Verlag, 1986.

    Google Scholar

    [17] J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, vol. 25, Providence, 1976.

    Google Scholar

    [18] J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, Mathematics in Science and Engineering, vol. 4, Academic Press, 1961.

    Google Scholar

    [19] P. Mason, U. Boscain and Y. Chitour, Common polynomial Lyapunov functions for linear switched systems, SIAM J. Control Optim., 2006, 45(1), 226-245.

    Google Scholar

    [20] G. Mazanti, Stabilization of persistently excited linear systems by delayed feedback laws, Systems Control Lett., 2014, 68, 57-67.

    Google Scholar

    [21] G. Mazanti, Y. Chitour and M. Sigalotti, Stabilization of two-dimensional persistently excited linear control systems with arbitrary rate of convergence, SIAM J. Control Optim., 2013, 51(2), 801-823.

    Google Scholar

    [22] E. Ott, T. Sauer and J. A. Yorke, Coping with Chaos:Analysis of Chaotic Data and the Exploitation of Chaotic Systems, Wiley Series in Nonlinear Science, 1994.

    Google Scholar

    [23] H. M. Rodrigues, Abstract Methods for Synchronization and Applications, Applicable Analysis, 1996, 62, 263-296.

    Google Scholar

    [24] H. M. Rodrigues, L. F. C. Alberto and N. C. Bretas, On the Invariance Principle. Generalizations and Aplications to Synchronism, IEEE Transactions on Circuit ans Systems, IEEE Transactions on Circuit ans Systems-I:Fundamental Theory and Applications, 2000, 47(5), 730-739.

    Google Scholar

    [25] H. M. Rodrigues, L. F. C. Alberto and N. C. Bretas, Uniform invariance principle and synchronization, robustness with respect to parameter variation, Journal of Differential Equations, 2001, 169(1), 228-254.

    Google Scholar

    [26] H. M. Rodrigues, J. Wu and L. R. A. Gabriel Filho, Uniform Dissipativeness, Robust Synchronization and Location of the Attractor of Parametrized Nonautonomous Discrete Systems, International Journal of Bifurcation and Chaos, 2011, 21(2), 513-526.

    Google Scholar

    [27] H. M. Rodrigues, J. Wu and M. Gameiro, Robust Synchronization of Parametrized Nonautonomous Discrete Systems with Applications to Communication Systems, Journal of Applied Analysis and Computation, 2011, 1, 537-547.

    Google Scholar

    [28] J. Zhou, Y. Zou, S. Guan, Z. Liu and S. Boccaletti, Synchronization in slowly switching networks of coupled oscillators, Scientific Reports, 2016, 6:35979.

    Google Scholar

Article Metrics

Article views(2640) PDF downloads(1001) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint