[1]
|
V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Stochastic synchronization of oscillations in dissipative systems, (Russian), Izv. Vyssh. Uchebn. Zaved. Radiofiz., 1986, 29(9), 1050-1060.
Google Scholar
|
[2]
|
V. S. Afraimovich and H. M. Rodrigues, Uniform Dissipativeness and Synchronization on Nonautonomous Equations, Equadiff95, International Conference on Differential, World Scientific, 1998, 3-17.
Google Scholar
|
[3]
|
R. Barboza and G. Chen, On the Global Boundedness of the Chen System, International Journal of Bifurcation and Chaos, 2011, 21(11), 3373-3385.
Google Scholar
|
[4]
|
A. N. Carvalho, T. Dlotko and H. M. Rodrigues, Upper Semicontinuity of attractors and synchronization, Journal of Mathematical Analysis and Applications, 1998, 220, 13-41.
Google Scholar
|
[5]
|
J. Chattopadhyay, N. Pal, S. Sudip and K. Qamar, Chaos control via feeding switching in an omnivory system, Bio Systems, 2015, 138, 18-24.
Google Scholar
|
[6]
|
Y. Chitour, G. Mazanti, M. Sigalotti, Stability of non-autonomous difference equations with applications to transport and wave propagation on networks, Netw. Heterog. Media, 2016, 11(4), 563-601.
Google Scholar
|
[7]
|
Y. Chitour, G. Mazanti, M. Sigalotti, Persistently damped transport on a network of circles, Trans. Amer. Math. Soc., 2017, 369(6), 3841-3881.
Google Scholar
|
[8]
|
L. O. Chua, T. Matsumoto and M. Komuro, The Double Scroll. IEEE Transactions on Circuits and Systems, 1985, CAS-32(8), 798-818.
Google Scholar
|
[9]
|
M. Frasca, A. Buscarino, M. Branciforte, L. Fortuna and J. C. Sprott, Synchronization of two Rossler systems with switching coupling, Nonlinear Dynamics, 2017, 88(1), 673-683.
Google Scholar
|
[10]
|
L. R. A. G. Filho, Comportamento Assintótico de sistemas não lineares discretos, Trabalho de Mestrado, Instituto de Ciências Matemáticas e de Computacão, USP, São Carlos, 2004. www.teses.usp.br/teses/disponiveis/55/55135/tde-12012005-230105/
Google Scholar
|
[11]
|
L. V. Gambuzza, A. Buscarino, L. Fortuna and M. Frasca, Memristor-Based Adaptive Coupling for Consensus and Synchronization, IEEE Transactions on Circuits and Systems, 2015, 62(4), 1175-1184.
Google Scholar
|
[12]
|
M. Gameiro and H. M. Rodrigues, Applications of Robust Synchronization to Communication Systems, Applicable Analysis, 2001, 79, 21-45.
Google Scholar
|
[13]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, A. M. S., 1988.
Google Scholar
|
[14]
|
S. Kim, S. Ann and X. Liu, Delay independent stability of linear switching systems with time delay, Journal of Mathematical Analysis and Applications, 2008, 339(2), 785-801.
Google Scholar
|
[15]
|
I. S. Labouriau and H. M. Rodrigues, Synchronization of coupled equations of Hodgkin-Huxley type, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A., 2003, 10, 463-476.
Google Scholar
|
[16]
|
J. P. LaSalle, The Stability and Control of Discrete Processes, Applied Mathematical Sciences, vol. 62, Springer-Verlag, 1986.
Google Scholar
|
[17]
|
J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, vol. 25, Providence, 1976.
Google Scholar
|
[18]
|
J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, Mathematics in Science and Engineering, vol. 4, Academic Press, 1961.
Google Scholar
|
[19]
|
P. Mason, U. Boscain and Y. Chitour, Common polynomial Lyapunov functions for linear switched systems, SIAM J. Control Optim., 2006, 45(1), 226-245.
Google Scholar
|
[20]
|
G. Mazanti, Stabilization of persistently excited linear systems by delayed feedback laws, Systems Control Lett., 2014, 68, 57-67.
Google Scholar
|
[21]
|
G. Mazanti, Y. Chitour and M. Sigalotti, Stabilization of two-dimensional persistently excited linear control systems with arbitrary rate of convergence, SIAM J. Control Optim., 2013, 51(2), 801-823.
Google Scholar
|
[22]
|
E. Ott, T. Sauer and J. A. Yorke, Coping with Chaos:Analysis of Chaotic Data and the Exploitation of Chaotic Systems, Wiley Series in Nonlinear Science, 1994.
Google Scholar
|
[23]
|
H. M. Rodrigues, Abstract Methods for Synchronization and Applications, Applicable Analysis, 1996, 62, 263-296.
Google Scholar
|
[24]
|
H. M. Rodrigues, L. F. C. Alberto and N. C. Bretas, On the Invariance Principle. Generalizations and Aplications to Synchronism, IEEE Transactions on Circuit ans Systems, IEEE Transactions on Circuit ans Systems-I:Fundamental Theory and Applications, 2000, 47(5), 730-739.
Google Scholar
|
[25]
|
H. M. Rodrigues, L. F. C. Alberto and N. C. Bretas, Uniform invariance principle and synchronization, robustness with respect to parameter variation, Journal of Differential Equations, 2001, 169(1), 228-254.
Google Scholar
|
[26]
|
H. M. Rodrigues, J. Wu and L. R. A. Gabriel Filho, Uniform Dissipativeness, Robust Synchronization and Location of the Attractor of Parametrized Nonautonomous Discrete Systems, International Journal of Bifurcation and Chaos, 2011, 21(2), 513-526.
Google Scholar
|
[27]
|
H. M. Rodrigues, J. Wu and M. Gameiro, Robust Synchronization of Parametrized Nonautonomous Discrete Systems with Applications to Communication Systems, Journal of Applied Analysis and Computation, 2011, 1, 537-547.
Google Scholar
|
[28]
|
J. Zhou, Y. Zou, S. Guan, Z. Liu and S. Boccaletti, Synchronization in slowly switching networks of coupled oscillators, Scientific Reports, 2016, 6:35979.
Google Scholar
|