[1]
|
H. Cheng and T. Zhang, A new predator-prey model with a profitless delay of digestion and impulsive perturbation on the prey, Appl. Math. Comput., 2011, 217(22), 9198-9208.
Google Scholar
|
[2]
|
H. Cheng, F. Wang and T. Zhang, Multi-state dependent impulsive control for Holling I predator-prey model, Discrete Dyn. Nat. Soc., 2012, 2012(12), 30-44.
Google Scholar
|
[3]
|
H. Cheng, F. Wang and T. Zhang, Multi-state dependent impulsive control for pest management, J. Appl. Math., 2012.
Google Scholar
|
[4]
|
H. Cheng, T. Zhang and F. Wang, Existence and attractiveness of order one periodic solution of a Holling I predator-prey model, Abstr. Appl. Anal., 2012.
Google Scholar
|
[5]
|
L. S. Chen, Pest control and geometric theory of semi-continuous dynamical system, J. Beihua Univ. Natl. Sci. Ed., 2011, 12(1), 1-9.
Google Scholar
|
[6]
|
Z. Hu, M. Han and V. G. Romanovski, Bifurcations of planar Hamiltonian systems with impulsive perturbation, Appl. Math. Comput., 2013, 219(12), 6733-6742.
Google Scholar
|
[7]
|
G. Jiang, Q. Lu and L. Qian, IComplex dynamics of a Holling type Ⅱ preypredator system with state feedback control, Chaos Soliton. Fract., 2007, 31(2), 448-461.
Google Scholar
|
[8]
|
G. Jiang, Q. Lu and L. Peng, Impulsive ecological control of a stage-structured pest management system, Math. Biosci. Eng., 2005, 2(2), 329-344.
Google Scholar
|
[9]
|
J. Jiao and L. Chen, Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators, Int. J. Biomath., 2008, 1(2), 197-208.
Google Scholar
|
[10]
|
G. Liu, X. Wang, X. Meng and S. Gao, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps, Complexity, 2017, 2017(3), 1-15.
Google Scholar
|
[11]
|
B. Liu, Y. Zhang and L. Chen, Dynamic complexities of a Holling I predatorprey model concerning periodic biological and chemical control, Chaos Soliton. Fract., 2004, 22(1), 123-134.
Google Scholar
|
[12]
|
B. Liu, Y. Tian and B. Kang, Dynamics on a Holling Ⅱ predator-prey model with state-dependent impulsive control, Int. J. Biomath., 2012, 5(03), 675.
Google Scholar
|
[13]
|
X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865-875.
Google Scholar
|
[14]
|
X. Meng and L. Zhang, Evolutionary dynamics in a Lotka-Volterra competition model with impulsive periodic disturbance, Math. Method. Appl. Sci., 2016, 39(2), 177-188.
Google Scholar
|
[15]
|
L. Nie, J. Peng, Z. Teng and L. Hu, Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects, J. Comput. Appl. Math., 2009, 224(2), 544-555.
Google Scholar
|
[16]
|
X. Song, M. Hao and X. Meng, A stage-structured predator-prey model with disturbing pulse and time delays, Appl. Math. Model., 2009, 33(1), 211-223.
Google Scholar
|
[17]
|
Y. Tian, T. Zhang and K. Sun, Dynamics analysis of a pest management preypredator model by means of interval state monitoring and control, Nonlinear Anal. Hybrid Syst., 2017, 23, 122-141.
Google Scholar
|
[18]
|
S. Tang and R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 2005, 50(3), 257-292.
Google Scholar
|
[19]
|
J. Wang, H. Cheng, X. Meng and B. G. S. A. Pradeep, Geometrical analysis and control optimization of a predator-prey model with multi state-dependent impulse, Adv. Difference Equ., 2017, 2017(1), 252.
Google Scholar
|
[20]
|
Z. Xiong, Y. Xue and S. Li, A food chain system with Holling IV functional responses and impulsive effect, Int. J. Biomath., 2008, 1(3), 361-375.
Google Scholar
|
[21]
|
G. Zhu, X. Meng and L. Chen, The dynamics of a mutual interference age structured predator-prey model with time delay and impulsive perturbations on predators, Appl. Math. Comput., 2010, 216(1), 308-316.
Google Scholar
|
[22]
|
T. Zhang, X. Meng, T. Zhang and Y. Song, Global dynamics for a new highdimensional SIR model with distributed delay, Appl. Math. Comput., 2012, 218(24), 11806-11819.
Google Scholar
|
[23]
|
T. Zhang, X. Meng and T. Zhang, Global analysis for a delayed SIV model with direct and environmental transmissions, J. Appl. Anal. Comput., 2016, 6(2), 479-491.
Google Scholar
|
[24]
|
H. Zhang and L. Chen, Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model, Appl. Math. Comput., 2008, 202(2), 675-687.
Google Scholar
|
[25]
|
T. Zhang, X. Meng, Song Yi and T. Zhang, A stage-structured predator-prey SI model with disease in the prey and impulsive effects, Math. Model. Anal., 2013, 18(4), 505-528.
Google Scholar
|
[26]
|
T. Zhang, W. Ma and X. Meng, Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input, Adv. Difference Equ., 2017, 2017(1), 115.
Google Scholar
|
[27]
|
W. Zhao, J. Li and X. Meng, Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity, Discrete Dyn. Nat. Soc., 2015, 2015, 1-10.
Google Scholar
|
[28]
|
S. Zhang, X. Meng, T. Feng and T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybrid Syst., 2017, 26, 19-37.
Google Scholar
|
[29]
|
T. Zhang, J. Zhang, X. Meng and T. Zhang, Geometric analysis of a pest management model with Holling's type Ⅲ functional response and nonlinear state feedback control, Nonlinear Dynam., 2016, 84(3), 1529-1539.
Google Scholar
|
[30]
|
W. Zhao, Y. Liu, T. Zhang and X. Meng, Geometric analysis of an integrated pest management model including two state impulses, Abstr. Appl. Anal., 2014.
Google Scholar
|
[31]
|
T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 2015, 266, 95-107.
Google Scholar
|
[32]
|
W. Zhao, T. Zhang, X. Meng and Y. Yang, Dynamical analysis of a pest management model with saturated growth rate and state dependent impulsive effects, Abstr. Appl. Anal., 2013.
Google Scholar
|
[33]
|
Z. Zhao, L. Pang and X. Song, Optimal control of phytoplankton-fish model with the impulsive feedback control, Nonlinear Dynam., 2017, 88(3), 2003-2011.
Google Scholar
|
[34]
|
L. Zhao, L. Chen and Q. Zhang, The geometrical analysis of a predator-prey model with two state impulses, Math. Biosci., 2012, 238(2), 55-64.
Google Scholar
|