2018 Volume 8 Issue 2
Article Contents

Shouguo Zhu, Zhenbin Fan, Gang Li. APPROXIMATE CONTROLLABILITY OF RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION EQUATIONS WITH INTEGRAL CONTRACTOR ASSUMPTION[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 532-548. doi: 10.11948/2018.532
Citation: Shouguo Zhu, Zhenbin Fan, Gang Li. APPROXIMATE CONTROLLABILITY OF RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION EQUATIONS WITH INTEGRAL CONTRACTOR ASSUMPTION[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 532-548. doi: 10.11948/2018.532

APPROXIMATE CONTROLLABILITY OF RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION EQUATIONS WITH INTEGRAL CONTRACTOR ASSUMPTION

  • Fund Project:
  • We propose and investigate an evolution system with a RiemannLiouville fractional derivative. With the aid of a resolvent method, we formulate a suitable notion of solutions to this system and demonstrate the corresponding existence and uniqueness of solutions under a regular integral contractor condition. Furthermore, by applying a space decomposition technique, we exhibit the approximate controllability result of the system. This paper closes with a simple example, which confirms our analytical findings.
    MSC: 26A33;47A10;93B05
  • 加载中
  • [1] M. Altman, Contractors and Contractor Directions, Theory and Applications, Marcel Dekker, New York, 1977.

    Google Scholar

    [2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2001.

    Google Scholar

    [3] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel:theory and application to heat transfer model, Thermal. Sci., 2016, 20(2), 763-769.

    Google Scholar

    [4] P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 2015, 256, 232-246.

    Google Scholar

    [5] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 2002, 14(3), 433-440.

    Google Scholar

    [6] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1(2), 73-85.

    Google Scholar

    [7] Z. Fan, Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives, Indag. Math., 2014, 25(3), 516-524.

    Google Scholar

    [8] Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67.

    Google Scholar

    [9] R. K. George, Approximate controllability of semilinear systems using integral contractors, Numer. Funct. Anal. Optim., 1995, 16(1-2), 127-138.

    Google Scholar

    [10] R. K. George, D. N. Chalishajar and A. K. Nandakumaran, Exact controllability of the nonlinear third-order dispersion equation, J. Math. Anal. Appl., 2007, 332(2), 1028-1044.

    Google Scholar

    [11] S. Kumar and N. Sukavanam, Controllability of fractional order system with nonlinear term having integral contractor, Fract. Calc. Appl. Anal., 2013, 16(4), 791-801.

    Google Scholar

    [12] S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Diff. Equ., 2012, 252(11), 6163-6174.

    Google Scholar

    [13] F. Li, J. Liang and H. K. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525.

    Google Scholar

    [14] M. L. Li and J. L. Ma, Approximate controllability of second order impulsive functional differential system with infinite delay in Banach spaces, J. Appl. Anal. Comput., 2016, 6(2), 492-514.

    Google Scholar

    [15] K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 2012, 25(5), 808-812.

    Google Scholar

    [16] Z. Liu and X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53(4), 1920-1933.

    Google Scholar

    [17] N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces, SIAM J. Control Optim., 2003, 42(5), 1604-1622.

    Google Scholar

    [18] N. I. Mahmudov and N. Semi, Approximate controllability of semilinear control systems in Hilbert spaces, TWMS J. Appl. Eng. Math., 2012, 2(1), 67-74.

    Google Scholar

    [19] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 1987, 25(3), 715-722.

    Google Scholar

    [20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar

    [21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [22] C. Rajivganthi, P. Muthukumar and B. G. Priya, Approximate controllability of fractional stochastic integro-differential equations with infinite delay of order 1< α < 2, IMA J. Math. Control. Inform., 2016, 33(3), 685-699.

    Google Scholar

    [23] N. Sukavanam and M. Kumar, S-controllability of an abstract first order semilinear control system, Numer. Funct. Anal. Optim., 2010, 31(9), 1023-1034.

    Google Scholar

    [24] P. Tamilalagan and P. Balasubramaniam, Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators, Internat. J. Control, 2017, 90(8), 1713-1727.

    Google Scholar

    [25] J. R. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 2011, 12(6), 3642-3653.

    Google Scholar

    [26] Z. M. Yan and F. X. Lu, Existence results for a new class of fractional implusive partial neutral stochastic integro-differential equations with infinite delay, J. Appl. Anal. Comput., 2015, 5(3), 329-346.

    Google Scholar

    [27] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 2007, 328(2), 1075-1081.

    Google Scholar

    [28] E. Zeidler, Nonlinear Functional Analysis and Its Application Ⅱ/A, SpringerVerlag, New York, 1990.

    Google Scholar

    [29] H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 1983, 21(4), 551-565.

    Google Scholar

    [30] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063-1077.

    Google Scholar

    [31] Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, J. Integral Equ. Appl., 2013, 25(4), 557-586.

    Google Scholar

Article Metrics

Article views(2923) PDF downloads(1586) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint