[1]
|
M. Altman, Contractors and Contractor Directions, Theory and Applications, Marcel Dekker, New York, 1977.
Google Scholar
|
[2]
|
W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2001.
Google Scholar
|
[3]
|
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel:theory and application to heat transfer model, Thermal. Sci., 2016, 20(2), 763-769.
Google Scholar
|
[4]
|
P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 2015, 256, 232-246.
Google Scholar
|
[5]
|
M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 2002, 14(3), 433-440.
Google Scholar
|
[6]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, 1(2), 73-85.
Google Scholar
|
[7]
|
Z. Fan, Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives, Indag. Math., 2014, 25(3), 516-524.
Google Scholar
|
[8]
|
Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67.
Google Scholar
|
[9]
|
R. K. George, Approximate controllability of semilinear systems using integral contractors, Numer. Funct. Anal. Optim., 1995, 16(1-2), 127-138.
Google Scholar
|
[10]
|
R. K. George, D. N. Chalishajar and A. K. Nandakumaran, Exact controllability of the nonlinear third-order dispersion equation, J. Math. Anal. Appl., 2007, 332(2), 1028-1044.
Google Scholar
|
[11]
|
S. Kumar and N. Sukavanam, Controllability of fractional order system with nonlinear term having integral contractor, Fract. Calc. Appl. Anal., 2013, 16(4), 791-801.
Google Scholar
|
[12]
|
S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Diff. Equ., 2012, 252(11), 6163-6174.
Google Scholar
|
[13]
|
F. Li, J. Liang and H. K. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525.
Google Scholar
|
[14]
|
M. L. Li and J. L. Ma, Approximate controllability of second order impulsive functional differential system with infinite delay in Banach spaces, J. Appl. Anal. Comput., 2016, 6(2), 492-514.
Google Scholar
|
[15]
|
K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 2012, 25(5), 808-812.
Google Scholar
|
[16]
|
Z. Liu and X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53(4), 1920-1933.
Google Scholar
|
[17]
|
N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces, SIAM J. Control Optim., 2003, 42(5), 1604-1622.
Google Scholar
|
[18]
|
N. I. Mahmudov and N. Semi, Approximate controllability of semilinear control systems in Hilbert spaces, TWMS J. Appl. Eng. Math., 2012, 2(1), 67-74.
Google Scholar
|
[19]
|
K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 1987, 25(3), 715-722.
Google Scholar
|
[20]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
Google Scholar
|
[21]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[22]
|
C. Rajivganthi, P. Muthukumar and B. G. Priya, Approximate controllability of fractional stochastic integro-differential equations with infinite delay of order 1< α < 2, IMA J. Math. Control. Inform., 2016, 33(3), 685-699.
Google Scholar
|
[23]
|
N. Sukavanam and M. Kumar, S-controllability of an abstract first order semilinear control system, Numer. Funct. Anal. Optim., 2010, 31(9), 1023-1034.
Google Scholar
|
[24]
|
P. Tamilalagan and P. Balasubramaniam, Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators, Internat. J. Control, 2017, 90(8), 1713-1727.
Google Scholar
|
[25]
|
J. R. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 2011, 12(6), 3642-3653.
Google Scholar
|
[26]
|
Z. M. Yan and F. X. Lu, Existence results for a new class of fractional implusive partial neutral stochastic integro-differential equations with infinite delay, J. Appl. Anal. Comput., 2015, 5(3), 329-346.
Google Scholar
|
[27]
|
H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 2007, 328(2), 1075-1081.
Google Scholar
|
[28]
|
E. Zeidler, Nonlinear Functional Analysis and Its Application Ⅱ/A, SpringerVerlag, New York, 1990.
Google Scholar
|
[29]
|
H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 1983, 21(4), 551-565.
Google Scholar
|
[30]
|
Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063-1077.
Google Scholar
|
[31]
|
Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, J. Integral Equ. Appl., 2013, 25(4), 557-586.
Google Scholar
|