[1]
|
Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, J. Comput. Math. Appl., 2012, 64(10), 3253-3257.
Google Scholar
|
[2]
|
Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, J. Appl. Math. Lett., 2016, 51, 48-54.
Google Scholar
|
[3]
|
A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, J. Appl. Math. Comput., 2014, 228, 251-257.
Google Scholar
|
[4]
|
A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 2012, 389(1), 403-411.
Google Scholar
|
[5]
|
C. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, J. Comput. Math. Appl., 2011, 61(2), 191-202.
Google Scholar
|
[6]
|
D. Guo, Nonlinear Functional Analysis, second ed., Shandong Sci. & Tec. Press, Shandong, 2001.
Google Scholar
|
[7]
|
V. Kac, P. Cheung, Quantum Calculus. Springer, new work, 2002.
Google Scholar
|
[8]
|
S. Kang, Existence and uniqueness of positive periodic solutions for a class of integral equations with mixed monotone nonlinear terms, J. Appl. Math. Lett., 2017, 71, 24-29.
Google Scholar
|
[9]
|
M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, 1964.
Google Scholar
|
[10]
|
X. Li, Z. Han and X. Li, Boundary value problems of fractional q-difference Schringer equations, J. Appl. Math. Lett., 2015, 46, 100-105.
Google Scholar
|
[11]
|
A. C. Rui, Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, J. Comput. Math. Appl., 2011, 61(2), 367-373.
Google Scholar
|
[12]
|
S. Samko, A. Marichev, Ol:Fractional Integral and Derivative:Theory and Applications, Gordon Breach, Yverdon, 1993.
Google Scholar
|
[13]
|
X. Zhang, L. Liu and Y. Wu, Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, J. Math. Comput. Model., 2012, 55(3-4), 1263-1274.
Google Scholar
|