2018 Volume 8 Issue 2
Article Contents

Yaqiong Cui, Shugui Kang, Huiqin Chen. UNIQUENESS OF SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL Q-DIFFERENCES[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 524-531. doi: 10.11948/2018.524
Citation: Yaqiong Cui, Shugui Kang, Huiqin Chen. UNIQUENESS OF SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL Q-DIFFERENCES[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 524-531. doi: 10.11948/2018.524

UNIQUENESS OF SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL Q-DIFFERENCES

  • Fund Project:
  • This paper deals with uniqueness of solutions for integral boundary value problem {8<:(Dqαu)(t) + f(t,u(t))=0,t ∈ (0,1),u(0)=Dqu(0)=0,u(1)=λ ∫01 u(s)dqs,where α ∈ (2,3], λ ∈ (0;[α]q), Dqα denotes the q-fractional differential operator of order α. By using the iterative method and one new fixed point theorem, we obtain that there exist a unique nontrivial solution and a unique positive solution.
    MSC: O175.1;O175.8
  • 加载中
  • [1] Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, J. Comput. Math. Appl., 2012, 64(10), 3253-3257.

    Google Scholar

    [2] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, J. Appl. Math. Lett., 2016, 51, 48-54.

    Google Scholar

    [3] A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, J. Appl. Math. Comput., 2014, 228, 251-257.

    Google Scholar

    [4] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 2012, 389(1), 403-411.

    Google Scholar

    [5] C. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, J. Comput. Math. Appl., 2011, 61(2), 191-202.

    Google Scholar

    [6] D. Guo, Nonlinear Functional Analysis, second ed., Shandong Sci. & Tec. Press, Shandong, 2001.

    Google Scholar

    [7] V. Kac, P. Cheung, Quantum Calculus. Springer, new work, 2002.

    Google Scholar

    [8] S. Kang, Existence and uniqueness of positive periodic solutions for a class of integral equations with mixed monotone nonlinear terms, J. Appl. Math. Lett., 2017, 71, 24-29.

    Google Scholar

    [9] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, 1964.

    Google Scholar

    [10] X. Li, Z. Han and X. Li, Boundary value problems of fractional q-difference Schringer equations, J. Appl. Math. Lett., 2015, 46, 100-105.

    Google Scholar

    [11] A. C. Rui, Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, J. Comput. Math. Appl., 2011, 61(2), 367-373.

    Google Scholar

    [12] S. Samko, A. Marichev, Ol:Fractional Integral and Derivative:Theory and Applications, Gordon Breach, Yverdon, 1993.

    Google Scholar

    [13] X. Zhang, L. Liu and Y. Wu, Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, J. Math. Comput. Model., 2012, 55(3-4), 1263-1274.

    Google Scholar

Article Metrics

Article views(2618) PDF downloads(1050) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint