[1]
|
C. O. Alves and F. J. S. A. Corrêa, A sub-supersolution approach for a quasilinear Kirchhoff equation, Journal of Mathematical Physics, 2015, 56, 051501. Doi:10.1063/1.4919670.
Google Scholar
|
[2]
|
C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of kirchhoff-type, Computers and Mathematics with Applications, 2005, 49, 85-93.
Google Scholar
|
[3]
|
H. Amann, Lusternik-Schnirelman theory and non-linear Eigenvalue Problems, Math. Ann., 1972, 199, 55-72.
Google Scholar
|
[4]
|
G. M. Bisci, V. Radulescu and R. Servadei, Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016.
Google Scholar
|
[5]
|
G. M. Bisci and V. Radulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 2015, 54(3), 2985-3008.
Google Scholar
|
[6]
|
G. M. Bisci and V. Radulescu, A sharp eigenvalue theorem for fractional elliptic equations, Israel J. Math., 2017, 219(1), 331-351.
Google Scholar
|
[7]
|
J. Bruning, Zur abschatzung der spektralfunction elliptischer operatoren, Math. Z., 1974, 137, 75-85.
Google Scholar
|
[8]
|
B. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 2009, 71, 4883-4892.
Google Scholar
|
[9]
|
R. Chiappinelli, Remarks on bifurcation for elliptic operator with odd nonlinearity, Israel Journal of Mathematics, 1989, 65(3), 285-293.
Google Scholar
|
[10]
|
R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinearity term, Nonlinear Analysis:Theory, Methods and Applications, 1989, 13(7), 871-878.
Google Scholar
|
[11]
|
Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3, J. Functional Analysis, 2015, 269, 3500-3527.
Google Scholar
|
[12]
|
X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 2009, 70, 1407-1414.
Google Scholar
|
[13]
|
J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in RN, J. Math. Anal. Appl., 2010, 368(2), 564-574.
Google Scholar
|
[14]
|
G. Kirchhoff, Vorlesungenuber mechanik, Teubner, Leipzig, Germany, 1883.
Google Scholar
|
[15]
|
X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 2016, 64, 63-69.
Google Scholar
|
[16]
|
X. Li and S. Song, Stabilization of Delay Systems:Delay-dependent Impulsive Control, IEEE Transactions on Automatic Control, 2017, 62(1), 406-411.
Google Scholar
|
[17]
|
Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 2012, 253(7), 2285-2294.
Google Scholar
|
[18]
|
Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. I. H. Poincaré, 2014, 31, 155-167.
Google Scholar
|
[19]
|
T. F. Ma and J. E. M. Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 2003, 16, 243-248.
Google Scholar
|
[20]
|
K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 2006, 221, 246-255.
Google Scholar
|
[21]
|
G. Prodi, Eigenvalues of non-linear problems, Cremonese, Roma, 1974.
Google Scholar
|
[22]
|
P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 2016, 5(1), 27-55.
Google Scholar
|
[23]
|
V. Radulescu, M. Xiang and B. Zhang, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 2016, 29(10), 3186-3205.
Google Scholar
|
[24]
|
T. Shibata, Asymptotic properties of variational eigenvalues for semilinear elliptic operators, Boll. Un. Mat. Ital., 1988, 7(2B), 411-426.
Google Scholar
|
[25]
|
T. Shibata, Precise asymptotic formulas for semilinear eigenvalue problems, Ann. Henri Poincaré, 2001, 2, 713-732.
Google Scholar
|
[26]
|
T. Shibata, Precise spectral asymptotics for nonlinear Sturm-Liouville problems, J. Differential Equations, 2002, 180, 374-394.
Google Scholar
|
[27]
|
T. Shibata, Global behavior of the branch of positive solutions to a logistic equation of population dynamics, Proc. Amer. Math. Soc., 2008, 136(7), 2547-2554.
Google Scholar
|
[28]
|
W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 2015, 259, 1256-1274.
Google Scholar
|
[29]
|
B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problemJournal of Mathematical Analysis and Applications, 2016, 442(1), 72-102.
Google Scholar
|
[30]
|
X. Zhang, B. Zhang and M. Xiang, Ground states for fractional Schrödinger equations involving a critical nonlinearity, Adv. Nonlinear Anal., 2016, 5(3), 293-314.
Google Scholar
|