[1]
|
M. Caubergh, F. Dumortier and R. Roussarie, Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Math. Acad. Sci. Paris, 2005, 340(8), 587-592.
Google Scholar
|
[2]
|
L. Chen, X. Ma, G. Zhang and C. Li, Cyclicity of Several Quadratic Reversible Systams with Center of Genus One, Journal of Applied Analysis and Computation, 2011, 1, 439-447.
Google Scholar
|
[3]
|
S. Chow, C. Li and D. Wang, Normal Forms and Bifurcations of Planar Vector Fields, Cambridge University Press, 1994.
Google Scholar
|
[4]
|
C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser Verlag, 2007, Basel-Boston-Berlin.
Google Scholar
|
[5]
|
M. Grau, F. Mañosas and J. Villadelprat, A Chebyshev Criterion For Abelian Integrals, Tran. A. M. S., 2011, 363, 109-129.
Google Scholar
|
[6]
|
M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Alpha Sciences International Ltd. Oxford, 2017.
Google Scholar
|
[7]
|
M. Han, D. Luo and D. Zhu, The uniquness of limit cycles, bifurcated from a singular closed orbit, Acta Math. Sinica, 1992, 35(5), 673-684. (Chinese)
Google Scholar
|
[8]
|
M. Han and Z. Zhang, Cyclicity 1 and 2 Conditions for a 2-Polycycle of integrable Systems on the Plane, J. Diff. Eqns., 1999, 155, 245-261.
Google Scholar
|
[9]
|
C. Li, Z. Ma and Y. Zhou, Periodic Orbits in 3-Dimensional Systems and Application to a Perturbed Volterra System, J. Diff. Eqns., 2016, 260, 2750-2762.
Google Scholar
|
[10]
|
C. Li and Z. Zhang, A criterion for determining the monotonicity of ratio of two Abelian integrals, J. Diff. Eqns., 1996, 124, 407-424.
Google Scholar
|
[11]
|
F. Mañosas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Diff. Eqns., 2011, 251, 1656-1669.
Google Scholar
|
[12]
|
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Science Press, 1985(Chenise); Transl. Math. Monographs, Vol. 101 Amer. Math. Soc., Providence RI, 1992(English).
Google Scholar
|