2018 Volume 8 Issue 2
Article Contents

Minhua Cheng, Chengzhi Li. PERIODIC ORBIT OF THE PENDULUM WITH A SMALL NONLINEAR DAMPING[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 649-654. doi: 10.11948/2018.649
Citation: Minhua Cheng, Chengzhi Li. PERIODIC ORBIT OF THE PENDULUM WITH A SMALL NONLINEAR DAMPING[J]. Journal of Applied Analysis & Computation, 2018, 8(2): 649-654. doi: 10.11948/2018.649

PERIODIC ORBIT OF THE PENDULUM WITH A SMALL NONLINEAR DAMPING

  • Fund Project:
  • We study the pendulum with a small nonlinear damping, which can be expressed by a Hamiltonian system with a small perturbation. We prove that a unique periodic orbit exists for any initial position between the equilibrium point and the heteroclinic orbit of the unperturbed system, depending on the choice of the bifurcation parameter in the damping. The main tools are bifurcation theory and Abelian integral technique, as well as the Zhang's uniqueness theorem on Liénard equations.
    MSC: 34C07;34C08;37G15
  • 加载中
  • [1] M. Caubergh, F. Dumortier and R. Roussarie, Alien limit cycles near a Hamiltonian 2-saddle cycle, C. R. Math. Acad. Sci. Paris, 2005, 340(8), 587-592.

    Google Scholar

    [2] L. Chen, X. Ma, G. Zhang and C. Li, Cyclicity of Several Quadratic Reversible Systams with Center of Genus One, Journal of Applied Analysis and Computation, 2011, 1, 439-447.

    Google Scholar

    [3] S. Chow, C. Li and D. Wang, Normal Forms and Bifurcations of Planar Vector Fields, Cambridge University Press, 1994.

    Google Scholar

    [4] C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser Verlag, 2007, Basel-Boston-Berlin.

    Google Scholar

    [5] M. Grau, F. Mañosas and J. Villadelprat, A Chebyshev Criterion For Abelian Integrals, Tran. A. M. S., 2011, 363, 109-129.

    Google Scholar

    [6] M. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing; Alpha Sciences International Ltd. Oxford, 2017.

    Google Scholar

    [7] M. Han, D. Luo and D. Zhu, The uniquness of limit cycles, bifurcated from a singular closed orbit, Acta Math. Sinica, 1992, 35(5), 673-684. (Chinese)

    Google Scholar

    [8] M. Han and Z. Zhang, Cyclicity 1 and 2 Conditions for a 2-Polycycle of integrable Systems on the Plane, J. Diff. Eqns., 1999, 155, 245-261.

    Google Scholar

    [9] C. Li, Z. Ma and Y. Zhou, Periodic Orbits in 3-Dimensional Systems and Application to a Perturbed Volterra System, J. Diff. Eqns., 2016, 260, 2750-2762.

    Google Scholar

    [10] C. Li and Z. Zhang, A criterion for determining the monotonicity of ratio of two Abelian integrals, J. Diff. Eqns., 1996, 124, 407-424.

    Google Scholar

    [11] F. Mañosas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Diff. Eqns., 2011, 251, 1656-1669.

    Google Scholar

    [12] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Science Press, 1985(Chenise); Transl. Math. Monographs, Vol. 101 Amer. Math. Soc., Providence RI, 1992(English).

    Google Scholar

Article Metrics

Article views(2993) PDF downloads(1050) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint