2020 Volume 10 Issue 2
Article Contents

Huiqin Zhang, Yan Mo, Zhibo Wang. A HIGH ORDER DIFFERENCE METHOD FOR FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE SPATIALLY VARIABLE COEFFICIENTS UNDER PERIODIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 474-485. doi: 10.11948/20180150
Citation: Huiqin Zhang, Yan Mo, Zhibo Wang. A HIGH ORDER DIFFERENCE METHOD FOR FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE SPATIALLY VARIABLE COEFFICIENTS UNDER PERIODIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 474-485. doi: 10.11948/20180150

A HIGH ORDER DIFFERENCE METHOD FOR FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE SPATIALLY VARIABLE COEFFICIENTS UNDER PERIODIC BOUNDARY CONDITIONS

  • Corresponding author: Email address: wzbmath@gdut.edu.cn(Z. Wang)
  • Fund Project: This research is supported by the National Natural Science Foundation of China (No. 11701103, 11801095), Natural Science Foundation of Guangdong Province (No. 2017A030310538, 2019A1515010876), the Project of Science and Technology of Guangzhou (No. 201904010341), Young Top-notch Talent Program of Guangdong Province (No. 2017GC010379), the Project of Department of Education of Guangdong Province (No. 2017KTSCX062) and the grant from Guangdong University of Technology (Nos. 220413131 & No. 220413550)
  • In this paper, we propose a difference scheme with global convergence order O(τ2 + h4) for a class of the Caputo fractional equation. The difficulty caused by the spatially variable coefficients is successfully handled. The unique solvability, stability and convergence of the finite difference scheme are proved by use of the Fourier method. The obtained theoretical results are supported by numerical experiments.
    MSC: 65M06, 65M12, 65M15, 35R11
  • 加载中
  • [1] A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys, 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031

    CrossRef Google Scholar

    [2] M. Abbaszadeh and A. Mohebbi, A fourth-order compact solution of the twodimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl., 2013, 66, 1345-1359. doi: 10.1016/j.camwa.2013.08.010

    CrossRef Google Scholar

    [3] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 2009, 228, 7792-7804. doi: 10.1016/j.jcp.2009.07.021

    CrossRef Google Scholar

    [4] M. Cui, Compact exponential scheme for the time fractional convectiondiffusion reaction equation with variable coefficients, J. Comput. Phys., 2015, 280, 143-163. doi: 10.1016/j.jcp.2014.09.012

    CrossRef Google Scholar

    [5] K. Diethelm, The analysis of fractional differential equations, Springer., 2010, 2004, 1333-1341.

    Google Scholar

    [6] Q. Feng and F. Meng, Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient, Adv. Difference. Equ. 2016, 2016(1), 305.

    Google Scholar

    [7] G. Gao and Z. Sun, A compact finite difference scheme for the fractional subdiffusion equations, J. Comput. Phys., 2011, 230, 586-595. doi: 10.1016/j.jcp.2010.10.007

    CrossRef Google Scholar

    [8] L. Guo, Z. Wang and S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 2016, 93, 1665-1682. doi: 10.1080/00207160.2015.1070840

    CrossRef Google Scholar

    [9] X. Hu and L. Zhang, A new implicit compact difference scheme for the fourthorder fractional diffusion-wave system, Int. J. Comput. Math., 2014, 91, 2215-2231. doi: 10.1080/00207160.2013.871000

    CrossRef Google Scholar

    [10] C. Ji, Z. Sun and Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 2016, 66, 1148-1174. doi: 10.1007/s10915-015-0059-7

    CrossRef Google Scholar

    [11] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2006.

    Google Scholar

    [12] V.I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Rev. E., 1996, 53, 1336-1339.

    Google Scholar

    [13] Y. Liang, Z. Yao, Z. Wang, Fast high order difference schemes for the time fractional telegraph equation, Numer. Meth. Part Differ. Equ., 2020, 36, 154- 172. doi: 10.1002/num.22423

    CrossRef Google Scholar

    [14] Y. Lin and C. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225, 1533-1552. doi: 10.1016/j.jcp.2007.02.001

    CrossRef Google Scholar

    [15] P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 2020, https://doi.org/10.1016/j.apnum.2019.11.012. doi: 10.1016/j.apnum.2019.11.012

    CrossRef Google Scholar

    [16] A. Mohebbi, M. Abbaszadeh and M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 2013, 240, 36-48. doi: 10.1016/j.jcp.2012.11.052

    CrossRef Google Scholar

    [17] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. Elsevier Science Publishers B. V. 2004.

    Google Scholar

    [18] M. Medvinsky, S. Tsynkov and E. Turkel, The method of difference potentials for the Helmholtz equation using compact high order schemes, J. Sci. Comput., 2012, 53, 150-193. doi: 10.1007/s10915-012-9602-y

    CrossRef Google Scholar

    [19] R.R. Nigmatullin, To the theoretical explanation of the universal rexponse, Phys. Status. Solidi., 1984, 123(2), 739-745. doi: 10.1002/pssb.2221230241

    CrossRef Google Scholar

    [20] K.B. Oldhan and J. Spainer, The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar

    [21] L. Qiao, D. Xu and Z. Wang, An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel, Appl. Math. Comput., 2019, 354, 103-114. doi: 10.1016/j.cam.2018.05.007

    CrossRef Google Scholar

    [22] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuoustime finance, Phys. A., 2012, 284, 376-384.

    Google Scholar

    [23] I.N. Sneddon, Fourier Transforms, McGraw Hill, New York, 1951.

    Google Scholar

    [24] Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56, 193-209. doi: 10.1016/j.apnum.2005.03.003

    CrossRef Google Scholar

    [25] S. Vong, P. Lyu, X. Chen and S. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algor., 2016, 72, 195-210. doi: 10.1007/s11075-015-0041-3

    CrossRef Google Scholar

    [26] S. Vong and Z. Wang, A high order compact finite difference scheme for time fractional Fokker-Planck equations, Appl. Math. Lett., 2015, 43, 38-43. doi: 10.1016/j.aml.2014.11.007

    CrossRef Google Scholar

    [27] S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech., 2014, 6, 419-435. doi: 10.4208/aamm.2014.4.s1

    CrossRef Google Scholar

    [28] Z. Wang and S. Vong, A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates, Comput. Math. Appl., 2016, 71, 2524-2540. doi: 10.1016/j.camwa.2016.04.005

    CrossRef Google Scholar

    [29] Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15. doi: 10.1016/j.jcp.2014.08.012

    CrossRef Google Scholar

    [30] S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 2005, 42, 1862-1874. doi: 10.1137/030602666

    CrossRef Google Scholar

    [31] Z. Yao and Z. Wang, A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions, J. Appl. Anal. Comput, 2018, 8(4), 1159-1169.

    Google Scholar

    [32] H. Zhang, F. Liu, M. Phanikumar and M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection dispersion model, Comput. Math. Appl., 2013, 66, 693-701. doi: 10.1016/j.camwa.2013.01.031

    CrossRef Google Scholar

    [33] P. Zhang and H. Pu, A second-order compact difference scheme for the fourthorder fractional sub-diffusion equation, Numer. Algor., 2017, 76, 1-26. doi: 10.1007/s11075-016-0239-z

    CrossRef Google Scholar

    [34] X. Zhao and Q. Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., 2014, 38, 3848-3859. doi: 10.1016/j.apm.2013.10.037

    CrossRef Google Scholar

    [35] P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46, 1079-1095. doi: 10.1137/060673114

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(3284) PDF downloads(794) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint