[1]
|
A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys, 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031
CrossRef Google Scholar
|
[2]
|
M. Abbaszadeh and A. Mohebbi, A fourth-order compact solution of the twodimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl., 2013, 66, 1345-1359. doi: 10.1016/j.camwa.2013.08.010
CrossRef Google Scholar
|
[3]
|
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 2009, 228, 7792-7804. doi: 10.1016/j.jcp.2009.07.021
CrossRef Google Scholar
|
[4]
|
M. Cui, Compact exponential scheme for the time fractional convectiondiffusion reaction equation with variable coefficients, J. Comput. Phys., 2015, 280, 143-163. doi: 10.1016/j.jcp.2014.09.012
CrossRef Google Scholar
|
[5]
|
K. Diethelm, The analysis of fractional differential equations, Springer., 2010, 2004, 1333-1341.
Google Scholar
|
[6]
|
Q. Feng and F. Meng, Finite difference scheme with spatial fourth-order accuracy for a class of time fractional parabolic equations with variable coefficient, Adv. Difference. Equ. 2016, 2016(1), 305.
Google Scholar
|
[7]
|
G. Gao and Z. Sun, A compact finite difference scheme for the fractional subdiffusion equations, J. Comput. Phys., 2011, 230, 586-595. doi: 10.1016/j.jcp.2010.10.007
CrossRef Google Scholar
|
[8]
|
L. Guo, Z. Wang and S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 2016, 93, 1665-1682. doi: 10.1080/00207160.2015.1070840
CrossRef Google Scholar
|
[9]
|
X. Hu and L. Zhang, A new implicit compact difference scheme for the fourthorder fractional diffusion-wave system, Int. J. Comput. Math., 2014, 91, 2215-2231. doi: 10.1080/00207160.2013.871000
CrossRef Google Scholar
|
[10]
|
C. Ji, Z. Sun and Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 2016, 66, 1148-1174. doi: 10.1007/s10915-015-0059-7
CrossRef Google Scholar
|
[11]
|
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2006.
Google Scholar
|
[12]
|
V.I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrödinger-type equations, Phys. Rev. E., 1996, 53, 1336-1339.
Google Scholar
|
[13]
|
Y. Liang, Z. Yao, Z. Wang, Fast high order difference schemes for the time fractional telegraph equation, Numer. Meth. Part Differ. Equ., 2020, 36, 154- 172. doi: 10.1002/num.22423
CrossRef Google Scholar
|
[14]
|
Y. Lin and C. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 2007, 225, 1533-1552. doi: 10.1016/j.jcp.2007.02.001
CrossRef Google Scholar
|
[15]
|
P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 2020, https://doi.org/10.1016/j.apnum.2019.11.012. doi: 10.1016/j.apnum.2019.11.012
CrossRef Google Scholar
|
[16]
|
A. Mohebbi, M. Abbaszadeh and M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 2013, 240, 36-48. doi: 10.1016/j.jcp.2012.11.052
CrossRef Google Scholar
|
[17]
|
M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. Elsevier Science Publishers B. V. 2004.
Google Scholar
|
[18]
|
M. Medvinsky, S. Tsynkov and E. Turkel, The method of difference potentials for the Helmholtz equation using compact high order schemes, J. Sci. Comput., 2012, 53, 150-193. doi: 10.1007/s10915-012-9602-y
CrossRef Google Scholar
|
[19]
|
R.R. Nigmatullin, To the theoretical explanation of the universal rexponse, Phys. Status. Solidi., 1984, 123(2), 739-745. doi: 10.1002/pssb.2221230241
CrossRef Google Scholar
|
[20]
|
K.B. Oldhan and J. Spainer, The Fractional Calculus, Academic Press, New York, 1974.
Google Scholar
|
[21]
|
L. Qiao, D. Xu and Z. Wang, An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel, Appl. Math. Comput., 2019, 354, 103-114. doi: 10.1016/j.cam.2018.05.007
CrossRef Google Scholar
|
[22]
|
E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuoustime finance, Phys. A., 2012, 284, 376-384.
Google Scholar
|
[23]
|
I.N. Sneddon, Fourier Transforms, McGraw Hill, New York, 1951.
Google Scholar
|
[24]
|
Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56, 193-209. doi: 10.1016/j.apnum.2005.03.003
CrossRef Google Scholar
|
[25]
|
S. Vong, P. Lyu, X. Chen and S. Lei, High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives, Numer. Algor., 2016, 72, 195-210. doi: 10.1007/s11075-015-0041-3
CrossRef Google Scholar
|
[26]
|
S. Vong and Z. Wang, A high order compact finite difference scheme for time fractional Fokker-Planck equations, Appl. Math. Lett., 2015, 43, 38-43. doi: 10.1016/j.aml.2014.11.007
CrossRef Google Scholar
|
[27]
|
S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech., 2014, 6, 419-435. doi: 10.4208/aamm.2014.4.s1
CrossRef Google Scholar
|
[28]
|
Z. Wang and S. Vong, A compact difference scheme for a two dimensional nonlinear fractional Klein-Gordon equation in polar coordinates, Comput. Math. Appl., 2016, 71, 2524-2540. doi: 10.1016/j.camwa.2016.04.005
CrossRef Google Scholar
|
[29]
|
Z. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 2014, 277, 1-15. doi: 10.1016/j.jcp.2014.08.012
CrossRef Google Scholar
|
[30]
|
S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 2005, 42, 1862-1874. doi: 10.1137/030602666
CrossRef Google Scholar
|
[31]
|
Z. Yao and Z. Wang, A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions, J. Appl. Anal. Comput, 2018, 8(4), 1159-1169.
Google Scholar
|
[32]
|
H. Zhang, F. Liu, M. Phanikumar and M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection dispersion model, Comput. Math. Appl., 2013, 66, 693-701. doi: 10.1016/j.camwa.2013.01.031
CrossRef Google Scholar
|
[33]
|
P. Zhang and H. Pu, A second-order compact difference scheme for the fourthorder fractional sub-diffusion equation, Numer. Algor., 2017, 76, 1-26. doi: 10.1007/s11075-016-0239-z
CrossRef Google Scholar
|
[34]
|
X. Zhao and Q. Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., 2014, 38, 3848-3859. doi: 10.1016/j.apm.2013.10.037
CrossRef Google Scholar
|
[35]
|
P. Zhuang, F. Liu, V. Anh and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 2008, 46, 1079-1095. doi: 10.1137/060673114
CrossRef Google Scholar
|