[1]
|
T. Candan, Existence of positive periodic solutions of first-order neutral differential equations, Math. Methods Appl. Sci., 2017, 40(1), 205-209.
Google Scholar
|
[2]
|
Y. Chen, The existence of periodic solutions for a class of neutral differential-difference equations, J. Austral. Math. Soc. Ser. B., 1992, 33 (4), 508-516. doi: 10.1017/S0334270000007190
CrossRef Google Scholar
|
[3]
|
Y. Chen, The existence of periodic solutions of the equation $ x(t)=-f(x(t), x(t-\tau))$, J. Math. Anal. Appl. 1992, 163 (1), 227-237. doi: 10.1016/0022-247X(92)90290-T
CrossRef Google Scholar
|
[4]
|
R. Gaines and J. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568. Springer-Verlag, Berlin-New York, 1977.
Google Scholar
|
[5]
|
S. Gao, Z. Chen and W. Shi, New oscillation criteria for third-order neutral differential equations with continuously distributed delay, Appl. Math. Lett., 2018, 77 64-71. doi: 10.1016/j.aml.2017.09.009
CrossRef Google Scholar
|
[6]
|
C. Guo and Z. Guo, Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Anal. Real World Appl., 2009, 10 (5), 3285-3297. doi: 10.1016/j.nonrwa.2008.10.023
CrossRef Google Scholar
|
[7]
|
C. Guo, O. Donal and R. Agarwal, Existence of periodic solutions for a class of second-order neutral differential equations with multiple deviating arguments, Cubo, 2010, 12 (3), 153-165. doi: 10.4067/S0719-06462010000300010
CrossRef Google Scholar
|
[8]
|
C. Guo, D. Regan, Y. Xu and R. Agarwal, Homoclinic orbits for a singular second-order neutral differential equation, J. Math. Anal. Appl., 2010, 366(2), 550-560. doi: 10.1016/j.jmaa.2009.12.038
CrossRef Google Scholar
|
[9]
|
C. Guo, O. Donal and R. Agarwal, Existence of multiple periodic solutions for a class of first-order neutral differential equations, Appl. Anal. Discrete Math., 2011, 5 (1), 147-158. doi: 10.2298/AADM100914028G
CrossRef Google Scholar
|
[10]
|
Z. Guo and J. Yu, Multiplicity results for periodic solutions to delay differential equations via critical point theory, J. Differential Equations, 2005, 218(1), 15-35. doi: 10.1016/j.jde.2005.08.007
CrossRef Google Scholar
|
[11]
|
Z. Guo and J. Yu, Multiplicity results on period solutions to higher dimensional differential equations with multiple delays, J. Dynam. Differential Equations, 2011, 23(4), 1029-1052. doi: 10.1007/s10884-011-9228-z
CrossRef Google Scholar
|
[12]
|
R. Hakl and M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differential Equations, 2017, 263(1), 451-469. doi: 10.1016/j.jde.2017.02.044
CrossRef Google Scholar
|
[13]
|
J. Hale, Theory of functional differential equations, Second edition. Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.
Google Scholar
|
[14]
|
J. Kaplan and J. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 1974, 48, 317-324. doi: 10.1016/0022-247X(74)90162-0
CrossRef Google Scholar
|
[15]
|
J. Li and X. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f(0) > 0$ on periodic solution of differential delay equations, Sci. China Ser. A, 1999, 42 9, 957-964.
Google Scholar
|
[16]
|
J. Li and G. Wang, Sharp inequalities for periodic functions, Appl. Math. E-Notes, 2005, 5, 75-83.
Google Scholar
|
[17]
|
Y. Li, Positive periodic solutions of nonlinear second order ordinary differential equations, Acta Math. Sinica (Chin. Ser.), (2002), 45(3), 481-488.
Google Scholar
|
[18]
|
Y. Liu, H. Zhao and J. Yan, Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed delays, Appl. Math. Lett., 2017, 67, 67-74. doi: 10.1016/j.aml.2016.12.002
CrossRef Google Scholar
|
[19]
|
S. Lu, Existence of periodic solutions for a $p$-Laplacian neutral functional differential equation, Nonlinear Anal. 2009, 70 (1), 231-243. doi: 10.1016/j.na.2007.11.053
CrossRef Google Scholar
|
[20]
|
Y. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay, Rocky Mountain J. Math., 2012, 42(6), 1983-1993. doi: 10.1216/RMJ-2012-42-6-1983
CrossRef Google Scholar
|
[21]
|
X. Shu, Y. Xu and L. Huang, Infinite periodic solutions to a class of second-order Sturm-Liouville neutral differential equations, Nonlinear Anal., 2008, no.68(4), 905-911.
Google Scholar
|
[22]
|
P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 2003, 190(2), 643-662. doi: 10.1016/S0022-0396(02)00152-3
CrossRef Google Scholar
|
[23]
|
G. Wang and J. Yan, Existence of periodic solutions for second order nonlinear neutral delay equations, Acta Math. Sinica (Chin. Ser.) 2004, 47(2), 379-384.
Google Scholar
|
[24]
|
Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 2018, 79, 43-50. doi: 10.1016/j.aml.2017.11.016
CrossRef Google Scholar
|