2020 Volume 10 Issue 2
Article Contents

Manna Huang, Chengjun Guo, Junming Liu. THE EXISTENCE OF PERIODIC SOLUTIONS FOR THREE-ORDER NEUTRAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 457-473. doi: 10.11948/20180139
Citation: Manna Huang, Chengjun Guo, Junming Liu. THE EXISTENCE OF PERIODIC SOLUTIONS FOR THREE-ORDER NEUTRAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 457-473. doi: 10.11948/20180139

THE EXISTENCE OF PERIODIC SOLUTIONS FOR THREE-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

  • Corresponding author: Email address:jmliu@gdut.edu.cn(J. Liu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11801094)
  • In this paper, by using Kranoselskii fixed point point theorem and Mawhin's continuation theorem, we establish two existence theorem on the periodic solutions for a class of three-order neutral differential equations.
    MSC: 39A23
  • 加载中
  • [1] T. Candan, Existence of positive periodic solutions of first-order neutral differential equations, Math. Methods Appl. Sci., 2017, 40(1), 205-209.

    Google Scholar

    [2] Y. Chen, The existence of periodic solutions for a class of neutral differential-difference equations, J. Austral. Math. Soc. Ser. B., 1992, 33 (4), 508-516. doi: 10.1017/S0334270000007190

    CrossRef Google Scholar

    [3] Y. Chen, The existence of periodic solutions of the equation $ x(t)=-f(x(t), x(t-\tau))$, J. Math. Anal. Appl. 1992, 163 (1), 227-237. doi: 10.1016/0022-247X(92)90290-T

    CrossRef Google Scholar

    [4] R. Gaines and J. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568. Springer-Verlag, Berlin-New York, 1977.

    Google Scholar

    [5] S. Gao, Z. Chen and W. Shi, New oscillation criteria for third-order neutral differential equations with continuously distributed delay, Appl. Math. Lett., 2018, 77 64-71. doi: 10.1016/j.aml.2017.09.009

    CrossRef Google Scholar

    [6] C. Guo and Z. Guo, Existence of multiple periodic solutions for a class of second-order delay differential equations, Nonlinear Anal. Real World Appl., 2009, 10 (5), 3285-3297. doi: 10.1016/j.nonrwa.2008.10.023

    CrossRef Google Scholar

    [7] C. Guo, O. Donal and R. Agarwal, Existence of periodic solutions for a class of second-order neutral differential equations with multiple deviating arguments, Cubo, 2010, 12 (3), 153-165. doi: 10.4067/S0719-06462010000300010

    CrossRef Google Scholar

    [8] C. Guo, D. Regan, Y. Xu and R. Agarwal, Homoclinic orbits for a singular second-order neutral differential equation, J. Math. Anal. Appl., 2010, 366(2), 550-560. doi: 10.1016/j.jmaa.2009.12.038

    CrossRef Google Scholar

    [9] C. Guo, O. Donal and R. Agarwal, Existence of multiple periodic solutions for a class of first-order neutral differential equations, Appl. Anal. Discrete Math., 2011, 5 (1), 147-158. doi: 10.2298/AADM100914028G

    CrossRef Google Scholar

    [10] Z. Guo and J. Yu, Multiplicity results for periodic solutions to delay differential equations via critical point theory, J. Differential Equations, 2005, 218(1), 15-35. doi: 10.1016/j.jde.2005.08.007

    CrossRef Google Scholar

    [11] Z. Guo and J. Yu, Multiplicity results on period solutions to higher dimensional differential equations with multiple delays, J. Dynam. Differential Equations, 2011, 23(4), 1029-1052. doi: 10.1007/s10884-011-9228-z

    CrossRef Google Scholar

    [12] R. Hakl and M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differential Equations, 2017, 263(1), 451-469. doi: 10.1016/j.jde.2017.02.044

    CrossRef Google Scholar

    [13] J. Hale, Theory of functional differential equations, Second edition. Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.

    Google Scholar

    [14] J. Kaplan and J. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 1974, 48, 317-324. doi: 10.1016/0022-247X(74)90162-0

    CrossRef Google Scholar

    [15] J. Li and X. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f(0) > 0$ on periodic solution of differential delay equations, Sci. China Ser. A, 1999, 42 9, 957-964.

    Google Scholar

    [16] J. Li and G. Wang, Sharp inequalities for periodic functions, Appl. Math. E-Notes, 2005, 5, 75-83.

    Google Scholar

    [17] Y. Li, Positive periodic solutions of nonlinear second order ordinary differential equations, Acta Math. Sinica (Chin. Ser.), (2002), 45(3), 481-488.

    Google Scholar

    [18] Y. Liu, H. Zhao and J. Yan, Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed delays, Appl. Math. Lett., 2017, 67, 67-74. doi: 10.1016/j.aml.2016.12.002

    CrossRef Google Scholar

    [19] S. Lu, Existence of periodic solutions for a $p$-Laplacian neutral functional differential equation, Nonlinear Anal. 2009, 70 (1), 231-243. doi: 10.1016/j.na.2007.11.053

    CrossRef Google Scholar

    [20] Y. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay, Rocky Mountain J. Math., 2012, 42(6), 1983-1993. doi: 10.1216/RMJ-2012-42-6-1983

    CrossRef Google Scholar

    [21] X. Shu, Y. Xu and L. Huang, Infinite periodic solutions to a class of second-order Sturm-Liouville neutral differential equations, Nonlinear Anal., 2008, no.68(4), 905-911.

    Google Scholar

    [22] P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 2003, 190(2), 643-662. doi: 10.1016/S0022-0396(02)00152-3

    CrossRef Google Scholar

    [23] G. Wang and J. Yan, Existence of periodic solutions for second order nonlinear neutral delay equations, Acta Math. Sinica (Chin. Ser.) 2004, 47(2), 379-384.

    Google Scholar

    [24] Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 2018, 79, 43-50. doi: 10.1016/j.aml.2017.11.016

    CrossRef Google Scholar

Article Metrics

Article views(2628) PDF downloads(832) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint