2020 Volume 10 Issue 2
Article Contents

Sohrab Bazm, Alireza Hosseini. THE ALTERNATIVE LEGENDRE TAU METHOD FOR SOLVING NONLINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 442-456. doi: 10.11948/20180134
Citation: Sohrab Bazm, Alireza Hosseini. THE ALTERNATIVE LEGENDRE TAU METHOD FOR SOLVING NONLINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 442-456. doi: 10.11948/20180134

THE ALTERNATIVE LEGENDRE TAU METHOD FOR SOLVING NONLINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS

  • In this paper, the alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear multi-order fractional differential equations (FDEs). First, the operational matrix of fractional integration of an arbitrary order and the product operational matrix are derived for ALPs. These matrices together with the spectral Tau method are then utilized to reduce the solution of the mentioned equations into the one of solving a system of nonlinear algebraic equations with unknown ALP coefficients of the exact solution. The fractional derivatives are considered in the Caputo sense and the fractional integration is described in the Riemann-Liouville sense. Numerical examples illustrate that the present method is very effective for linear and nonlinear multi-order FDEs and high accuracy solutions can be obtained only using a small number of ALPs.
    MSC: 26A33, 05E35, 33C45, 44A45
  • 加载中
  • [1] R. Bagley and P. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures., AIAA Journal, 1985, 23(6), 918–925. doi: 10.2514/3.9007

    CrossRef Google Scholar

    [2] A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 2013, 26(1), 25–31. doi: 10.1016/j.aml.2012.01.027

    CrossRef Google Scholar

    [3] A. H. Bhrawy, T. M. Taha and J. A. T. Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dynam., 2015, 81(3), 1023–1052. doi: 10.1007/s11071-015-2087-0

    CrossRef Google Scholar

    [4] A. H. Bhrawy, M. M. Tharwat and M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc. (2), 2014, 37(4), 983–995.

    Google Scholar

    [5] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988.

    Google Scholar

    [6] V. S. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. Trans. Numer. Anal., 2006, 25, 17–26 (electronic).

    Google Scholar

    [7] F. Deutsch, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 7, Springer-Verlag, New York, 2001.

    Google Scholar

    [8] K. Diethelm, The analysis of fractional differential equations, 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential operators of Caputo type.

    Google Scholar

    [9] E. H. Doha and A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math., 2008, 58(8), 1224–1244. doi: 10.1016/j.apnum.2007.07.001

    CrossRef Google Scholar

    [10] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 2012, 36(10), 4931–4943. doi: 10.1016/j.apm.2011.12.031

    CrossRef Google Scholar

    [11] N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas and Propagation, 1996, 44(4), 554–566. doi: 10.1109/8.489308

    CrossRef Google Scholar

    [12] V. S. Ertürk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 2008, 215(1), 142–151. doi: 10.1016/j.cam.2007.03.029

    CrossRef Google Scholar

    [13] S. Esmaeili and M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(9), 3646–3654. doi: 10.1016/j.cnsns.2010.12.008

    CrossRef Google Scholar

    [14] B. Fornberg, A practical guide to pseudospectral methods, 1 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1996.

    Google Scholar

    [15] A. Gil, J. Segura and N. M. Temme, Numerical methods for special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.

    Google Scholar

    [16] J.-H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 1998, 167(1), 57 – 68.

    Google Scholar

    [17] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 2016, 286, 139–154.

    Google Scholar

    [18] R. Hilfer (Ed), Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

    Google Scholar

    [19] S. Kazem, S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 2013, 37(7), 5498–5510. doi: 10.1016/j.apm.2012.10.026

    CrossRef Google Scholar

    [20] E. Kreyszig, Introductory functional analysis with applications, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989.

    Google Scholar

    [21] F. C. Meral, T. J. Royston and R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(4), 939–945. doi: 10.1016/j.cnsns.2009.05.004

    CrossRef Google Scholar

    [22] P. Mokhtary, F. Ghoreishi and H. M. Srivastava, The Müntz-Legendre Tau method for fractional differential equations, Appl. Math. Model., 2016, 40(2), 671–684. doi: 10.1016/j.apm.2015.06.014

    CrossRef Google Scholar

    [23] S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 2005, 162(3), 1351–1365.

    Google Scholar

    [24] S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 2007, 31(5), 1248–1255. doi: 10.1016/j.chaos.2005.10.068

    CrossRef Google Scholar

    [25] S. Nemati, S. Sedaghat and I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 2016, 308, 231–242. doi: 10.1016/j.cam.2016.06.012

    CrossRef Google Scholar

    [26] Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 2006, 7(1), 27–34.

    Google Scholar

    [27] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Elsevier Science, 1998.

    Google Scholar

    [28] P. Rahimkhani, Y. Ordokhani and E. Babolian, An efficient approximate method for solving delay fractional optimal control problems, Nonlinear Dynamics, 2016, 1–13.

    Google Scholar

    [29] P. Rahimkhani, Y. Ordokhani and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model., 2016, 40(17-18), 8087– 8107. doi: 10.1016/j.apm.2016.04.026

    CrossRef Google Scholar

    [30] P. Rahimkhani, Y. Ordokhani and E. Babolian, A new operational matrix based on bernoulli wavelets for solving fractional delay differential equations, Numerical Algorithms, 2016, 1–23.

    Google Scholar

    [31] P. Rahimkhani, Y. Ordokhani and E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 2017, 309, 493–510. doi: 10.1016/j.cam.2016.06.005

    CrossRef Google Scholar

    [32] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 2010, 59(3), 1326–1336. doi: 10.1016/j.camwa.2009.07.006

    CrossRef Google Scholar

    [33] H. Saeedi and M. M. Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(3), 1216–1226. doi: 10.1016/j.cnsns.2010.07.017

    CrossRef Google Scholar

    [34] H. Sun, W. Chen, C. Li and Y. Chen, Fractional differential models for anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 2010, 389(14), 2719 – 2724. doi: 10.1016/j.physa.2010.02.030

    CrossRef Google Scholar

    [35] F. J. Valdes-Parada, J. A. Ochoa-Tapia and J. Alvarez-Ramirez, Effective medium equations for fractional fick's law in porous media, Physica A: Statistical Mechanics and its Applications, 2007, 373, 339 – 353. doi: 10.1016/j.physa.2006.06.007

    CrossRef Google Scholar

    [36] X.-J. Yang, J. A. Tenreiro Machado and H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput., 2016, 274, 143–151.

    Google Scholar

    [37] Y. Yang and Y. Huang, Spectral-collocation methods for fractional pantograph delay-integrodifferential equations, Adv. Math. Phys., 2013, Art. ID 821327, 14.

    Google Scholar

    [38] M. Yi, L. Wang and J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel, Appl. Math. Model., 2016, 40(4), 3422–3437. doi: 10.1016/j.apm.2015.10.009

    CrossRef Google Scholar

    [39] M. Zayernouri and G. E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 2014, 257(part A), 460–480.

    Google Scholar

Article Metrics

Article views(3117) PDF downloads(969) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint