[1]
|
R. Bagley and P. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures., AIAA Journal, 1985, 23(6), 918–925. doi: 10.2514/3.9007
CrossRef Google Scholar
|
[2]
|
A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett., 2013, 26(1), 25–31. doi: 10.1016/j.aml.2012.01.027
CrossRef Google Scholar
|
[3]
|
A. H. Bhrawy, T. M. Taha and J. A. T. Machado, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dynam., 2015, 81(3), 1023–1052. doi: 10.1007/s11071-015-2087-0
CrossRef Google Scholar
|
[4]
|
A. H. Bhrawy, M. M. Tharwat and M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc. (2), 2014, 37(4), 983–995.
Google Scholar
|
[5]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988.
Google Scholar
|
[6]
|
V. S. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. Trans. Numer. Anal., 2006, 25, 17–26 (electronic).
Google Scholar
|
[7]
|
F. Deutsch, Best approximation in inner product spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 7, Springer-Verlag, New York, 2001.
Google Scholar
|
[8]
|
K. Diethelm, The analysis of fractional differential equations, 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential operators of Caputo type.
Google Scholar
|
[9]
|
E. H. Doha and A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math., 2008, 58(8), 1224–1244. doi: 10.1016/j.apnum.2007.07.001
CrossRef Google Scholar
|
[10]
|
E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 2012, 36(10), 4931–4943. doi: 10.1016/j.apm.2011.12.031
CrossRef Google Scholar
|
[11]
|
N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas and Propagation, 1996, 44(4), 554–566. doi: 10.1109/8.489308
CrossRef Google Scholar
|
[12]
|
V. S. Ertürk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 2008, 215(1), 142–151. doi: 10.1016/j.cam.2007.03.029
CrossRef Google Scholar
|
[13]
|
S. Esmaeili and M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(9), 3646–3654. doi: 10.1016/j.cnsns.2010.12.008
CrossRef Google Scholar
|
[14]
|
B. Fornberg, A practical guide to pseudospectral methods, 1 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1996.
Google Scholar
|
[15]
|
A. Gil, J. Segura and N. M. Temme, Numerical methods for special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.
Google Scholar
|
[16]
|
J.-H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 1998, 167(1), 57 – 68.
Google Scholar
|
[17]
|
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 2016, 286, 139–154.
Google Scholar
|
[18]
|
R. Hilfer (Ed), Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
Google Scholar
|
[19]
|
S. Kazem, S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 2013, 37(7), 5498–5510. doi: 10.1016/j.apm.2012.10.026
CrossRef Google Scholar
|
[20]
|
E. Kreyszig, Introductory functional analysis with applications, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989.
Google Scholar
|
[21]
|
F. C. Meral, T. J. Royston and R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(4), 939–945. doi: 10.1016/j.cnsns.2009.05.004
CrossRef Google Scholar
|
[22]
|
P. Mokhtary, F. Ghoreishi and H. M. Srivastava, The Müntz-Legendre Tau method for fractional differential equations, Appl. Math. Model., 2016, 40(2), 671–684. doi: 10.1016/j.apm.2015.06.014
CrossRef Google Scholar
|
[23]
|
S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 2005, 162(3), 1351–1365.
Google Scholar
|
[24]
|
S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 2007, 31(5), 1248–1255. doi: 10.1016/j.chaos.2005.10.068
CrossRef Google Scholar
|
[25]
|
S. Nemati, S. Sedaghat and I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 2016, 308, 231–242. doi: 10.1016/j.cam.2016.06.012
CrossRef Google Scholar
|
[26]
|
Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 2006, 7(1), 27–34.
Google Scholar
|
[27]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Elsevier Science, 1998.
Google Scholar
|
[28]
|
P. Rahimkhani, Y. Ordokhani and E. Babolian, An efficient approximate method for solving delay fractional optimal control problems, Nonlinear Dynamics, 2016, 1–13.
Google Scholar
|
[29]
|
P. Rahimkhani, Y. Ordokhani and E. Babolian, Fractional-order Bernoulli wavelets and their applications, Appl. Math. Model., 2016, 40(17-18), 8087– 8107. doi: 10.1016/j.apm.2016.04.026
CrossRef Google Scholar
|
[30]
|
P. Rahimkhani, Y. Ordokhani and E. Babolian, A new operational matrix based on bernoulli wavelets for solving fractional delay differential equations, Numerical Algorithms, 2016, 1–23.
Google Scholar
|
[31]
|
P. Rahimkhani, Y. Ordokhani and E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 2017, 309, 493–510. doi: 10.1016/j.cam.2016.06.005
CrossRef Google Scholar
|
[32]
|
A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 2010, 59(3), 1326–1336. doi: 10.1016/j.camwa.2009.07.006
CrossRef Google Scholar
|
[33]
|
H. Saeedi and M. M. Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(3), 1216–1226. doi: 10.1016/j.cnsns.2010.07.017
CrossRef Google Scholar
|
[34]
|
H. Sun, W. Chen, C. Li and Y. Chen, Fractional differential models for anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 2010, 389(14), 2719 – 2724. doi: 10.1016/j.physa.2010.02.030
CrossRef Google Scholar
|
[35]
|
F. J. Valdes-Parada, J. A. Ochoa-Tapia and J. Alvarez-Ramirez, Effective medium equations for fractional fick's law in porous media, Physica A: Statistical Mechanics and its Applications, 2007, 373, 339 – 353. doi: 10.1016/j.physa.2006.06.007
CrossRef Google Scholar
|
[36]
|
X.-J. Yang, J. A. Tenreiro Machado and H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput., 2016, 274, 143–151.
Google Scholar
|
[37]
|
Y. Yang and Y. Huang, Spectral-collocation methods for fractional pantograph delay-integrodifferential equations, Adv. Math. Phys., 2013, Art. ID 821327, 14.
Google Scholar
|
[38]
|
M. Yi, L. Wang and J. Huang, Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel, Appl. Math. Model., 2016, 40(4), 3422–3437. doi: 10.1016/j.apm.2015.10.009
CrossRef Google Scholar
|
[39]
|
M. Zayernouri and G. E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 2014, 257(part A), 460–480.
Google Scholar
|