2020 Volume 10 Issue 2
Article Contents

Chun Li, Lin Li, He Yang. INFINITELY MANY SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER SYSTEMS WITH IMPULSIVE EFFECTS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 427-441. doi: 10.11948/20180131
Citation: Chun Li, Lin Li, He Yang. INFINITELY MANY SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER SYSTEMS WITH IMPULSIVE EFFECTS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 427-441. doi: 10.11948/20180131

INFINITELY MANY SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER SYSTEMS WITH IMPULSIVE EFFECTS

  • Corresponding author: Email address: Lch1999@swu.edu.cn(C. Li) 
  • Fund Project: The authors were supported by the Natural Science Foundation of Chongqing (No. cstc2017jcyjAX0044), the National Natural Science Foundation of China (No. 11971393), the Fundamental Research Funds for the Central Universities (No. XDJK2019B068)
  • In this paper, we establish the existence of infinitely many solutions for a class of non-autonomous second-order systems with impulsive effects. Our technique is based on the Fountain Theorem of Bartsch and the Symmetric Mountain Pass Lemma due to Kajikiya.
    MSC: 34B15, 34B37, 58E30
  • 加载中
  • [1] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 1983, 7(9), 981-1012. doi: 10.1016/0362-546X(83)90115-3

    CrossRef Google Scholar

    [2] T. Bartsch, Infinitely many solutions of a symmetric dirichlet problem, Nonlinear Anal., 1993, 20(10), 1205-1216. doi: 10.1016/0362-546X(93)90151-H

    CrossRef Google Scholar

    [3] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006.

    Google Scholar

    [4] G. Bonanno and R. Livrea, Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., 2010, 363(2), 627-638. doi: 10.1016/j.jmaa.2009.09.025

    CrossRef Google Scholar

    [5] H. Brézis, J. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., 1980, 33, 667-689. doi: 10.1002/cpa.3160330507

    CrossRef Google Scholar

    [6] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112(2), 332-336.

    Google Scholar

    [7] H. Chen and Z. He, Multiplicity of solutions for second-order Hamiltonian systems with impulses, J. Appl. Math. Comput., 2013, 42, 69-87. doi: 10.1007/s12190-012-0621-5

    CrossRef Google Scholar

    [8] F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J. Math. Anal. Appl., 2006, 319, 567-578. doi: 10.1016/j.jmaa.2005.06.062

    CrossRef Google Scholar

    [9] J. R. Graef, S. Heidarkhani and L. Kong, Nontrivial periodic solutions to second-order impulsive Hamiltonian systems, Electron. J. Differential Equations, 2015, 204, 1-17.

    Google Scholar

    [10] J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems, Differ. Equ. Appl., 2017, 9(2), 195-212.

    Google Scholar

    [11] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Analysis, 2005, 225, 352-370. doi: 10.1016/j.jfa.2005.04.005

    CrossRef Google Scholar

    [12] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Google Scholar

    [13] C. Li, Z.-Q. Ou and D.-L. Wu, On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems, Appl. Math. Lett., 2015, 43, 44-48. doi: 10.1016/j.aml.2014.11.013

    CrossRef Google Scholar

    [14] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems in: Applied Mathematical Sciences, Springer-Verlag, New York, 1989.

    Google Scholar

    [15] J. Mawhin and M. Willem, Origin and evolution of the palais-smale condition in critical point theory, J. Fixed Point Theory Appl., 2010, 7, 265-290. doi: 10.1007/s11784-010-0019-7

    CrossRef Google Scholar

    [16] J. J. Nieto and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. RWA, 2009, 10, 680-690. doi: 10.1016/j.nonrwa.2007.10.022

    CrossRef Google Scholar

    [17] N. Nyamoradi and R. Rodríguez-López, Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects, Chaos Solitons Fractals, 2017, 102, 254-263. doi: 10.1016/j.chaos.2017.05.020

    CrossRef Google Scholar

    [18] R. S. Palais and S. Smale, A generalized morse theory, Bull. Amer. Math. Soc, 1964, 70, 165-172. doi: 10.1090/S0002-9904-1964-11062-4

    CrossRef Google Scholar

    [19] P. Pucci and V. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital., 2010, 3(9), 543-584.

    Google Scholar

    [20] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 1978, 31(2), 157-184. doi: 10.1002/cpa.3160310203

    CrossRef Google Scholar

    [21] P. H. Rabinowitz, Mini-max methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, 1986.

    Google Scholar

    [22] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

    Google Scholar

    [23] J. Sun, H. Chen and J. Nieto, Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Math. Comput. Modell., 2011, 54, 544-555. doi: 10.1016/j.mcm.2011.02.044

    CrossRef Google Scholar

    [24] C. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 1998, 126(11), 3263-3270. doi: 10.1090/S0002-9939-98-04706-6

    CrossRef Google Scholar

    [25] C. Tang and X. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 2014, 34, 65-71. doi: 10.1016/j.aml.2014.04.001

    CrossRef Google Scholar

    [26] Y. Tian and W. Ge, Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 2008, 51, 509-527. doi: 10.1017/S0013091506001532

    CrossRef Google Scholar

    [27] M. Willem, Minimax theorems, Birkäuser Boston, Boston, 1996.

    Google Scholar

    [28] J. Xie, J. Li and Z. Luo, Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects, Bound. Value Probl., 2015, 52, 1-10.

    Google Scholar

    [29] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems. Theory and Applications, in: Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997.

    Google Scholar

    [30] D. Zhang, Q. Wu and B. Dai, Existence and multiplicity of periodic solutions generated by impulses for second-order Hamiltonian system, Electron. J. Differential Equations, 2014, 121, 1-12.

    Google Scholar

    [31] W. Zou, Variant fountain theorems and their applications, Manuscr. Math., 2001, 104, 343-358. doi: 10.1007/s002290170032

    CrossRef Google Scholar

Article Metrics

Article views(2587) PDF downloads(865) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint