[1]
|
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 1983, 7(9), 981-1012. doi: 10.1016/0362-546X(83)90115-3
CrossRef Google Scholar
|
[2]
|
T. Bartsch, Infinitely many solutions of a symmetric dirichlet problem, Nonlinear Anal., 1993, 20(10), 1205-1216. doi: 10.1016/0362-546X(93)90151-H
CrossRef Google Scholar
|
[3]
|
M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006.
Google Scholar
|
[4]
|
G. Bonanno and R. Livrea, Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., 2010, 363(2), 627-638. doi: 10.1016/j.jmaa.2009.09.025
CrossRef Google Scholar
|
[5]
|
H. Brézis, J. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., 1980, 33, 667-689. doi: 10.1002/cpa.3160330507
CrossRef Google Scholar
|
[6]
|
G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112(2), 332-336.
Google Scholar
|
[7]
|
H. Chen and Z. He, Multiplicity of solutions for second-order Hamiltonian systems with impulses, J. Appl. Math. Comput., 2013, 42, 69-87. doi: 10.1007/s12190-012-0621-5
CrossRef Google Scholar
|
[8]
|
F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J. Math. Anal. Appl., 2006, 319, 567-578. doi: 10.1016/j.jmaa.2005.06.062
CrossRef Google Scholar
|
[9]
|
J. R. Graef, S. Heidarkhani and L. Kong, Nontrivial periodic solutions to second-order impulsive Hamiltonian systems, Electron. J. Differential Equations, 2015, 204, 1-17.
Google Scholar
|
[10]
|
J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian systems, Differ. Equ. Appl., 2017, 9(2), 195-212.
Google Scholar
|
[11]
|
R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Analysis, 2005, 225, 352-370. doi: 10.1016/j.jfa.2005.04.005
CrossRef Google Scholar
|
[12]
|
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
Google Scholar
|
[13]
|
C. Li, Z.-Q. Ou and D.-L. Wu, On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems, Appl. Math. Lett., 2015, 43, 44-48. doi: 10.1016/j.aml.2014.11.013
CrossRef Google Scholar
|
[14]
|
J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems in: Applied Mathematical Sciences, Springer-Verlag, New York, 1989.
Google Scholar
|
[15]
|
J. Mawhin and M. Willem, Origin and evolution of the palais-smale condition in critical point theory, J. Fixed Point Theory Appl., 2010, 7, 265-290. doi: 10.1007/s11784-010-0019-7
CrossRef Google Scholar
|
[16]
|
J. J. Nieto and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. RWA, 2009, 10, 680-690. doi: 10.1016/j.nonrwa.2007.10.022
CrossRef Google Scholar
|
[17]
|
N. Nyamoradi and R. Rodríguez-López, Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects, Chaos Solitons Fractals, 2017, 102, 254-263. doi: 10.1016/j.chaos.2017.05.020
CrossRef Google Scholar
|
[18]
|
R. S. Palais and S. Smale, A generalized morse theory, Bull. Amer. Math. Soc, 1964, 70, 165-172. doi: 10.1090/S0002-9904-1964-11062-4
CrossRef Google Scholar
|
[19]
|
P. Pucci and V. Rǎdulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital., 2010, 3(9), 543-584.
Google Scholar
|
[20]
|
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 1978, 31(2), 157-184. doi: 10.1002/cpa.3160310203
CrossRef Google Scholar
|
[21]
|
P. H. Rabinowitz, Mini-max methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, 1986.
Google Scholar
|
[22]
|
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
Google Scholar
|
[23]
|
J. Sun, H. Chen and J. Nieto, Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Math. Comput. Modell., 2011, 54, 544-555. doi: 10.1016/j.mcm.2011.02.044
CrossRef Google Scholar
|
[24]
|
C. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 1998, 126(11), 3263-3270. doi: 10.1090/S0002-9939-98-04706-6
CrossRef Google Scholar
|
[25]
|
C. Tang and X. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Appl. Math. Lett., 2014, 34, 65-71. doi: 10.1016/j.aml.2014.04.001
CrossRef Google Scholar
|
[26]
|
Y. Tian and W. Ge, Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 2008, 51, 509-527. doi: 10.1017/S0013091506001532
CrossRef Google Scholar
|
[27]
|
M. Willem, Minimax theorems, Birkäuser Boston, Boston, 1996.
Google Scholar
|
[28]
|
J. Xie, J. Li and Z. Luo, Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects, Bound. Value Probl., 2015, 52, 1-10.
Google Scholar
|
[29]
|
S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems. Theory and Applications, in: Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997.
Google Scholar
|
[30]
|
D. Zhang, Q. Wu and B. Dai, Existence and multiplicity of periodic solutions generated by impulses for second-order Hamiltonian system, Electron. J. Differential Equations, 2014, 121, 1-12.
Google Scholar
|
[31]
|
W. Zou, Variant fountain theorems and their applications, Manuscr. Math., 2001, 104, 343-358. doi: 10.1007/s002290170032
CrossRef Google Scholar
|