2020 Volume 10 Issue 2
Article Contents

Jingqun Wang, Lixin Tian. BOUNDARY CONTROLLABILITY FOR THE TIME-FRACTIONAL NONLINEAR KORTEWEG-DE VRIES (KDV) EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 411-426. doi: 10.11948/20180018
Citation: Jingqun Wang, Lixin Tian. BOUNDARY CONTROLLABILITY FOR THE TIME-FRACTIONAL NONLINEAR KORTEWEG-DE VRIES (KDV) EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 411-426. doi: 10.11948/20180018

BOUNDARY CONTROLLABILITY FOR THE TIME-FRACTIONAL NONLINEAR KORTEWEG-DE VRIES (KDV) EQUATION

  • Corresponding author: Email address:tianlx@ujs.edu.cn(L. Tian)
  • Fund Project: This research was supported by the National Nature Science Foundation of China (Nos. 71690242, 91546118, 11731014)
  • In this paper, we study the time-fractional nonlinear Korteweg-de Vries (KdV) equation. By using the theory of semigroups, we prove the well-posedness of the time-fractional nonlinear KdV equation. Moreover, we present the boundary controllability result for the problem.
    MSC: 93B05, 35Q53
  • 加载中
  • [1] A. Atangana and A. Secer, The time-fractional coupled-Korteweg-de-Vries equations. Hindawi Publishing Corporation, Abstr. Appl. Anal., 2013, 2013, 947986.

    Google Scholar

    [2] J. L. Bona, S. M. Sun and B. Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, T. Am. Math. Soc., 2002, 354, 427-490. doi: 10.1090/S0002-9947-01-02885-9

    CrossRef Google Scholar

    [3] J. L. Bona, S. M. Sun and B. Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Commun. Partial Differential Eq., 2003, 28, 1391-1436. doi: 10.1081/PDE-120024373

    CrossRef Google Scholar

    [4] J. L. Bona, S. M. Sun and B. Y. Zhang, Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Annales de l'IHP Analyse non linšŠaire, 2008, 25, 1145-1185.

    Google Scholar

    [5] J. L. Bona, S. M. Sun and B. Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II, J. Differential Equations, 2009, 247, 2558-2596. doi: 10.1016/j.jde.2009.07.010

    CrossRef Google Scholar

    [6] B. A. Bubnov, General boundary value problems for the Korteweg-de Vries equation in a bounded domain, Differentsial'nye Uravneniya, 1979, 15, 26-31.

    Google Scholar

    [7] B. A. Bubnov, Solvability in the large of nonlinear boundary value problems for the Korteweg-de Vries equation in a bounded domain, Differentsial'nye Uravneniya, 1980, 16, 34-41.

    Google Scholar

    [8] M. A. Caicedo and B. Y. Zhang, Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain, J. Math. Anal. Appl., 2017, 448, 797-814. doi: 10.1016/j.jmaa.2016.11.032

    CrossRef Google Scholar

    [9] E. Cerpa and E. CršŠpeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Annales de l'Institut Henri Poincare. Non Linear Analysis. Elsevier Masson, 2009, 26, 457-475. doi: 10.1016/j.anihpc.2007.11.003

    CrossRef Google Scholar

    [10] E. Cerpa, I. Rivas and B. Y. Zhang, Boundary Controllability of the Korteweg-de Vries Equation on a Bounded Domain, SIAM J. Control. Optim., 2013, 51, 2976-3010. doi: 10.1137/120891721

    CrossRef Google Scholar

    [11] T. Colin and J. M. Ghidaglia, An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval, Adv. Differential Equ., 2001, 6, 1463-1492.

    Google Scholar

    [12] J. E. Colliander and C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Commun. Partial Differential Eq., 2002, 27, 2187-2266. doi: 10.1081/PDE-120016157

    CrossRef Google Scholar

    [13] E. Crépeau and M. Sorine, A reduced model of pulsatile flow in an arterial compartment, Chaos Soliton Fract., 2007, 34, 594-605. doi: 10.1016/j.chaos.2006.03.096

    CrossRef Google Scholar

    [14] E. Crépeau and M. Sorine, Identifiability of a reduced model of pulsatile flow in an arterial compartment, In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005, 12, 12-15.

    Google Scholar

    [15] H. Demiray, Nonlinear waves in a thick-walled viscoelastic tube filled with inviscit fluid, Int. J. Eng. Sci., 1998, 36, 345-357. doi: 10.1016/S0020-7225(97)00056-6

    CrossRef Google Scholar

    [16] W. S. Duan, B. R. Wang and R. J. Wei, Nonlinear waves propagating in an inhomogeneous blood vessel, Acta Phys. Sin., Overseas Ed., 1997, 6, 801-823.

    Google Scholar

    [17] A. V. Faminskii, Mixed problems for the Korteweg-de Vries equation, Sbornik: Mathematics, 1999, 190, 903. doi: 10.1070/SM1999v190n06ABEH000408

    CrossRef Google Scholar

    [18] A. V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation, Funct. Differ. Equ., 2001, 8, 183-194.

    Google Scholar

    [19] A. V. Faminskii, An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional-order Sobolev spaces, Commun. Partial Differential Eq., 2005, 29, 1653-1695. doi: 10.1081/PDE-200040191

    CrossRef Google Scholar

    [20] A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation, Differ. Integral Equ., 2007, 20, 601-642.

    Google Scholar

    [21] J. M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Differential Equations, 1988, 74, 369-3-90. doi: 10.1016/0022-0396(88)90010-1

    CrossRef Google Scholar

    [22] J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Commun. Partial Differential Eq., 2006, 31, 1151-1190. doi: 10.1080/03605300600718503

    CrossRef Google Scholar

    [23] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 2006, 51, 1367-1376. doi: 10.1016/j.camwa.2006.02.001

    CrossRef Google Scholar

    [24] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39, 422-443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [25] E. F. Kramer and B. Y. Zhang, Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain, J. Syst. Sci. Complex., 2010, 23, 499-526. doi: 10.1007/s11424-010-0143-x

    CrossRef Google Scholar

    [26] T. M. Laleg, E. Crépeau, Y. Papelier and M. Sorin, Arterial blood pressure analysis based on scattering transform I, In: Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, 2007.https://www.researchgate.net/publication/5844208_Arterial_blood_pressure_analysis_based_on_scattering_transform_I

    Google Scholar

    [27] C. Laurent, L. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Commun. Partial Differential Eq., 2010, 35, 707-744. doi: 10.1080/03605300903585336

    CrossRef Google Scholar

    [28] J. Li and K. S. Liu, Well-posedness of Korteweg-de Vries-Burgers Equation on a finite domain, India J. Pure Appl. Math, 2017, 48, 91-116. doi: 10.1007/s13226-016-0210-7

    CrossRef Google Scholar

    [29] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983.https://link.springer.com/book/10.1007%2F978-1-4612-5561-1

    Google Scholar

    [30] I. Rivas, M. Usman and B. Y. Zhang, Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain, arXiv preprint arXiv: 1010.4658, 2010https://www.researchgate.net/publication/47523035_Global_Well-posedness_and_Asymptotic_Behavior_of_a_Class_of_Initial-Boundary-Value_Problem_of_the_Korteweg-de_Vries_Equation_on_a_Finite_Domain

    Google Scholar

    [31] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Contr. Optim. Ca., 1997, 2, 33-55.https://www.researchgate.net/publication/264235534_Exact_boundary_controllability_for_the_Korteweg-de_Vries_equation_on_a_bounded_domain

    Google Scholar

    [32] L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Contr. Optim. Ca., 2004, 10, 346-380. doi: 10.1051/cocv:2004012

    CrossRef Google Scholar

    [33] D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control. Optim., 1993, 31, 659-676. doi: 10.1137/0331030

    CrossRef Google Scholar

    [34] J. Simon, Compact sets in the space $L^{p} (O, T; B)$, Ann. Mat, Pur. Appl., 1986, 146, 65-96. doi: 10.1007/BF01762360

    CrossRef Google Scholar

Article Metrics

Article views(2934) PDF downloads(1015) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint