[1]
|
N. Abdou, B.A. Alamri, Y.J. Cho, Y. Yao and L.J. Zhu, Parallel algorithms for variational inclusions and fixed points with applications, Fixed Point Theory Appl., 2014, 2014(174).
Google Scholar
|
[2]
|
A. Alghamdi, N. Shahzad and H.K. Xu, Properties and iterative methods for the $Q$-Lasso, Abst. Appl. Anal., 2013, Art ID 250943, 8 pages.
Google Scholar
|
[3]
|
B. Bassty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 1979, 72, 383-390. doi: 10.1016/0022-247X(79)90234-8
CrossRef Google Scholar
|
[4]
|
P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods. Athena Scientific. Belmont. MA, 1997.
Google Scholar
|
[5]
|
H. Brézis and P.L. Lions, Produits infinis de resolvantes, Israel J. Math., 1978, 29, 329-345. doi: 10.1007/BF02761171
CrossRef Google Scholar
|
[6]
|
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 2004, 20, 103-120. doi: 10.1088/0266-5611/20/1/006
CrossRef Google Scholar
|
[7]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl., 2002, 18, 441-453.
Google Scholar
|
[8]
|
C. Ceng, Approximation of common solutions of a split inclusion problem and a fixed-point problem, J. Appl. Numer. Optim., 2019, 1, 1-12.
Google Scholar
|
[9]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 1994, 8, 221-239. doi: 10.1007/BF02142692
CrossRef Google Scholar
|
[10]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 2005, 21, 2071-2084. doi: 10.1088/0266-5611/21/6/017
CrossRef Google Scholar
|
[11]
|
Y. Censor and A. Segal, The split common fixed point problem for directed operators. J. Convex Anal., 2009, 16, 587-600.
Google Scholar
|
[12]
|
S. Chang, C.-F. Wen and J.-C. Yao, Zero point problem of accretive operators in Banach spaces, Bull. Malays. Math. Sci. Soc., 2019, 42, 105-118. doi: 10.1007/s40840-017-0470-3
CrossRef Google Scholar
|
[13]
|
G. Chen and R.T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 1997, 7, 421-444. doi: 10.1137/S1052623495290179
CrossRef Google Scholar
|
[14]
|
Y. Cho, X. Qin and L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014, Art ID 94.
Google Scholar
|
[15]
|
P. Cholamjiak and Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math., 2019, 64, 409-435. doi: 10.21136/AM.2019.0323-18
CrossRef Google Scholar
|
[16]
|
L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 2005, 4, 1168-1200. doi: 10.1137/050626090
CrossRef Google Scholar
|
[17]
|
C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl., 1976, 53, 145-158.
Google Scholar
|
[18]
|
O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 1991, 29, 403-419. doi: 10.1137/0329022
CrossRef Google Scholar
|
[19]
|
S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 2000, 106, 226-240. doi: 10.1006/jath.2000.3493
CrossRef Google Scholar
|
[20]
|
K. Kankam, N. Pholasa and P. Cholamjiak, On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimization, Math. Meth. Appl. Sci., 2019, 42, 1352-1362. doi: 10.1002/mma.5420
CrossRef Google Scholar
|
[21]
|
L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 1979, 16, 964-979. doi: 10.1137/0716071
CrossRef Google Scholar
|
[22]
|
J. Lin and W. Takahashi, A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications, Positivity, 2012, 16, 429-453. doi: 10.1007/s11117-012-0161-0
CrossRef Google Scholar
|
[23]
|
G. López, V. Martín-Márquez, F. Wang and H.-K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012, Art ID 109236.
Google Scholar
|
[24]
|
E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 2008, 16, 899-912. doi: 10.1007/s11228-008-0102-z
CrossRef Google Scholar
|
[25]
|
G. Marino, A. Rugiano and D.R. Sahu, Strong convergence for a general explicit convex combination method for nonexpansive mappings and equilibrium points, J. Nonlinear Convex Anal., 2017, 18, 1953-1966.
Google Scholar
|
[26]
|
G. Marino and H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 2006, 318, 43-52. doi: 10.1016/j.jmaa.2005.05.028
CrossRef Google Scholar
|
[27]
|
B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche. Opérationnelle., 1970, 4, 154-158.
Google Scholar
|
[28]
|
E. Masad and S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal., 2007, 8, 367-371.
Google Scholar
|
[29]
|
A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 2000, 241, 46-55. doi: 10.1006/jmaa.1999.6615
CrossRef Google Scholar
|
[30]
|
N. Pholasa and P. Cholamjiak, The Regularization Method for Solving Variational Inclusion Problems, Thai J. Math., 2016, 14, 369-381.
Google Scholar
|
[31]
|
X. Qin, S.Y. Cho and L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., 2014, Art ID 75.
Google Scholar
|
[32]
|
T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 1976, 14, 877-898.
Google Scholar
|
[33]
|
T. Rockafellar, On the maximality of subdifferential mappings, Pac. J. Math., 1970, 33, 209-216. doi: 10.2140/pjm.1970.33.209
CrossRef Google Scholar
|
[34]
|
S. Sra, S. Nowozin and S.J. Wright, Optimization for machine learning, Cambridge, MIT Press, 2012.
Google Scholar
|
[35]
|
P. Sunthrayuth and P. Kumam, The resolvent operator techniques with perturbations for finding zeros of maximal monotone operator and fixed point problems in Hilbert spaces, Thai J. Math., 2016, 14, 1-21.
Google Scholar
|
[36]
|
W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
Google Scholar
|
[37]
|
S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 2010, 147, 27-41. doi: 10.1007/s10957-010-9713-2
CrossRef Google Scholar
|
[38]
|
V. Thong and P. Cholamjiak, Strong convergence of a forward-backward splitting method with a new step size for solving monotone inclusions, Comput. Appl. Math., 2019, 38. DOI: 10.1007/s40314-019-0855-z.
Google Scholar
|
[39]
|
R. Tibshirani, Regression shrinkage and selection via the lasso. J Roy. Stat. Soc. Ser. B., 1996, 58, 267-288.
Google Scholar
|
[40]
|
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 2000, 38, 431-446. doi: 10.1137/S0363012998338806
CrossRef Google Scholar
|
[41]
|
F. Wang and H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 2011, 74, 4105-4111. doi: 10.1016/j.na.2011.03.044
CrossRef Google Scholar
|
[42]
|
K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 2002, 66, 240-256. doi: 10.1112/S0024610702003332
CrossRef Google Scholar
|
[43]
|
K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 2010, 26, 105018, 17 pages.
Google Scholar
|
[44]
|
K. Xu, Properties and iterative methods for the Lasso and its variants, Chin. Ann. Math., 2014, 35B(3), 501-518.
Google Scholar
|
[45]
|
Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 2004, 20, 1261-1266. doi: 10.1088/0266-5611/20/4/014
CrossRef Google Scholar
|
[46]
|
J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Probl., 2005, 21, 1791-1799. doi: 10.1088/0266-5611/21/5/017
CrossRef Google Scholar
|